×

zbMATH — the first resource for mathematics

A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. (English) Zbl 1349.65448
Summary: The purpose of this work is to propose a novel a posteriori finite volume subcell limiter technique for the Discontinuous Galerkin finite element method for nonlinear systems of hyperbolic conservation laws in multiple space dimensions that works well for arbitrary high order of accuracy in space and time and that does not destroy the natural subcell resolution properties of the DG method. High order time discretization is achieved via a one-step ADER approach that uses a local space-time discontinuous Galerkin predictor method to evolve the data locally in time within each cell. Our new limiting strategy is based on the so-called MOOD paradigm, which a posteriori verifies the validity of a discrete candidate solution against physical and numerical detection criteria after each time step. Here, we employ a relaxed discrete maximum principle in the sense of piecewise polynomials and the positivity of the numerical solution as detection criteria. Within the DG scheme on the main grid, the discrete solution is represented by piecewise polynomials of degree \(N\). For those troubled cells that need limiting, our new limiter approach recomputes the discrete solution by scattering the DG polynomials at the previous time step onto a set of \(N_s = 2 N + 1\) finite volume subcells per space dimension. A robust but accurate ADER-WENO finite volume scheme then updates the subcell averages of the conservative variables within the detected troubled cells. The recomputed subcell averages are subsequently gathered back into high order cell-centered DG polynomials on the main grid via a subgrid reconstruction operator. The choice of \(N_s = 2 N + 1\) subcells is optimal since it allows to match the maximum admissible time step of the finite volume scheme on the subgrid with the maximum admissible time step of the DG scheme on the main grid, minimizing at the same time also the local truncation error of the subcell finite volume scheme. It furthermore provides an excellent subcell resolution of discontinuities. Our new approach is therefore radically different from classical DG limiters, where the limiter is using TVB or (H)WENO reconstruction based on the discrete solution of the DG scheme on the main grid at the new time level. In our case, the discrete solution is recomputed within the troubled cells from the old time level using a different and more robust numerical scheme on a subgrid level. We illustrate the performance of the new a posteriori subcell ADER-WENO finite volume limiter approach for very high order DG methods via the simulation of numerous test cases run on Cartesian grids in two and three space dimensions, using DG schemes of up to tenth order of accuracy in space and time (\(N = 9\)). The method is also able to run on massively parallel large scale supercomputing infrastructure, which is shown via one 3D test problem that uses 10 billion space-time degrees of freedom per time step.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
35L50 Initial-boundary value problems for first-order hyperbolic systems
Software:
RIEMANN
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Burbeau, A.; Sagaut, P.; Bruneau, C. H., A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys., 169, 1, 111-150, (May 2001)
[2] Cook, A. W.; Cabot, W. H., A high-wavenumber viscosity for high-resolution numerical methods, J. Comput. Phys., 195, 2, 594-601, (April 2004)
[3] Baeza, A.; Mulet, P., Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations, Int. J. Numer. Methods Fluids, 52, 455-471, (2006) · Zbl 1370.76116
[4] Balsara, D.; Altmann, C.; Munz, C. D.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG + HWENO schemes, J. Comput. Phys., 226, 586-620, (2007) · Zbl 1124.65072
[5] Balsara, D.; Shu, C. W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452, (2000) · Zbl 0961.65078
[6] Balsara, D. S., Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993, (2010) · Zbl 1303.76140
[7] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231, 7476-7503, (2012) · Zbl 1284.76261
[8] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 7504-7517, (2012)
[9] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLLC Riemann solver for unstructured meshes - with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208, (2014) · Zbl 1349.76426
[10] Balsara, D. S.; Meyer, C.; Dumbser, M.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - speed comparisons with Runge-Kutta methods, J. Comput. Phys., 235, 934-969, (2013) · Zbl 1291.76237
[11] Barth, T.; Charrier, P., Energy stable flux formulas for the discontinuous Galerkin discretization of first-order nonlinear conservation laws, (2001), NASA, Technical Report NAS-01-001
[12] T.J. Barth, D.C. Jespersen, The design and application of upwind schemes on unstructured meshes, AIAA Paper 89-0366, 1989, pp. 1-12.
[13] Cai, W.; Shu, C. W., Uniform high-order spectral methods for one and two dimensional Euler equations, J. Comput. Phys., 104, 427-443, (1993) · Zbl 0766.76069
[14] Campbell, J. C.; Shashkov, M. J., A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comput. Phys., 172, 4, 739-765, (2001) · Zbl 1002.76082
[15] Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146, 1, 227-262, (1998) · Zbl 0931.76080
[16] Caramana, E. J.; Shashkov, M. J.; Whalen, P. P., Formulations of artificial viscosity for multidimensional shock wave computations, J. Comput. Phys., 144, 70-97, (1998) · Zbl 1392.76041
[17] Casoni, E.; Peraire, J.; Huerta, A., One-dimensional shock-capturing for high-order discontinuous Galerkin methods, Int. J. Numer. Methods Fluids, 71, 6, 737-755, (2013)
[18] Casulli, V., A high-resolution wetting and drying algorithm for free-surface hydrodynamics, Int. J. Numer. Methods Fluids, 60, 391-408, (2009) · Zbl 1161.76034
[19] Casulli, V.; Stelling, G. S., Semi-implicit subgrid modelling of three-dimensional free-surface flows, Int. J. Numer. Methods Fluids, 67, 441-449, (2011) · Zbl 1316.76018
[20] Cesenek, J.; Feistauer, M.; Horacek, J.; Kucera, V.; Prokopova, J., Simulation of compressible viscous flow in time-dependent domains, Appl. Math. Comput., 219, 7139-7150, (2013) · Zbl 1426.76233
[21] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 10, 4028-4050, (2011) · Zbl 1218.65091
[22] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 54, 545-581, (1990) · Zbl 0695.65066
[23] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., Discontinuous Galerkin methods, Lect. Notes Comput. Sci. Eng., (2000), Springer
[24] Cockburn, B.; Lin, S. Y.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84, 90-113, (1989) · Zbl 0677.65093
[25] Cockburn, B.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435, (1989) · Zbl 0662.65083
[26] Cockburn, B.; Shu, C. W., The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Modél. Math. Anal. Numér., 25, 337-361, (1991) · Zbl 0732.65094
[27] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224, (1998) · Zbl 0920.65059
[28] Cockburn, B.; Shu, C. W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 173-261, (2001) · Zbl 1065.76135
[29] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63, (2012) · Zbl 1365.76149
[30] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int. J. Numer. Methods Fluids, 73, 362-392, (2013)
[31] Kuzmin, D., A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods, J. Comput. Appl. Math., 233, 12, 3077-3085, (2010), Finite Element Methods in Engineering and Science (FEMTEC 2009) · Zbl 1252.76045
[32] Kuzmin, D., Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis, Int. J. Numer. Methods Fluids, 71, 9, 1178-1190, (2013)
[33] Kuzmin, D., Hierarchical slope limiting in explicit and implicit discontinuous Galerkin methods, J. Comput. Phys., 257, 1140-1162, (2014) · Zbl 1352.65355
[34] Dolejsi, V.; Feistauer, M.; Schwab, C., On some aspects of the discontinuous Galerkin finite element method for conservation laws, Math. Comput. Simul., 61, 3-6, 333-346, (2003) · Zbl 1013.65108
[35] Dumbser, M.; Balsara, D.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, J. Comput. Phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[36] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227, 3971-4001, (2008) · Zbl 1142.65070
[37] Dumbser, M.; Hidalgo, A.; Zanotti, O., High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 268, 359-387, (2014) · Zbl 1295.65088
[38] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723, (2007) · Zbl 1110.65077
[39] Dumbser, M.; Käser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226, 204-243, (2007) · Zbl 1124.65074
[40] Dumbser, M.; Munz, C. D., Building blocks for arbitrary high order discontinuous Galerkin schemes, J. Sci. Comput., 27, 215-230, (2006) · Zbl 1115.65100
[41] Dumbser, M.; Schwartzkopff, T.; Munz, C. D., Arbitrary high order finite volume schemes for linear wave propagation, (Computational Science and High Performance Computing II, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), (2006), Springer), 129-144
[42] Dumbser, M.; Toro, E. F., On universal osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 635-671, (2011) · Zbl 1373.76125
[43] Dumbser, M.; Zanotti, O., Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations, J. Comput. Phys., 228, 6991-7006, (2009) · Zbl 1261.76028
[44] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D. S., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, J. Comput. Phys., 248, 257-286, (2013) · Zbl 1349.76325
[45] Ellzey, J. L.; Henneke, M. R.; Picone, J. M.; Oran, E. S., The interaction of a shock with a vortex: shock distortion and the production of acoustic waves, Phys. Fluids, 7, 172-184, (1995)
[46] Feistauer, M.; Dolejsi, V.; Kucera, V., On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers, Comput. Vis. Sci., 10, 1, 17-27, (2007)
[47] Feistauer, M.; Kucera, V.; Prokopová, J., Discontinuous Galerkin solution of compressible flow in time-dependent domains, Math. Comput. Simul., 80, 8, 1612-1623, (2010) · Zbl 1425.76212
[48] Gassner, G.; Dumbser, M.; Hindenlang, F.; Munz, C. D., Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J. Comput. Phys., 230, 4232-4247, (2011) · Zbl 1220.65122
[49] Gassner, G.; Kopriva, D. A., A comparison of the dispersion and dissipation errors of Gauss and Gauss-lobatto discontinuous Galerkin spectral element methods, SIAM J. Sci. Comput., 33, 5, 2560-2579, (2011) · Zbl 1255.65089
[50] Barter, G. E.; Darmofal, D. L., Shock capturing with PDE-based artificial viscosity for DGFEM: part I. formulation, J. Comput. Phys., 229, 5, 1810-1827, (March 2010)
[51] Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Math. USSR Sb., 47, 271-306, (1959) · Zbl 0171.46204
[52] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303, (1987) · Zbl 0652.65067
[53] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J. Sci. Comput., 48, 173-189, (2011) · Zbl 1221.65231
[54] Luo, H.; Baum, J. D.; Löhner, R., A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J. Comput. Phys., 225, 1, 686-713, (July 2007)
[55] Hou, S.; Liu, X. D., Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method, J. Sci. Comput., 31, 127-151, (2007) · Zbl 1152.76433
[56] Huerta, A.; Casoni, E.; Peraire, J., A simple shock-capturing technique for high-order discontinuous Galerkin methods, Int. J. Numer. Methods Fluids, 69, 10, 1614-1632, (2012) · Zbl 1253.76058
[57] Zhu, H.; Qiu, J., An h-adaptive RKDG method with troubled-cell indicator for two-dimensional hyperbolic conservation laws, Adv. Comput. Math., 39, 3-4, 445-463, (2013) · Zbl 1278.65159
[58] Ivan, L.; Groth, C. P.T., High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows, J. Comput. Phys., 257, 830-862, (2014) · Zbl 1349.76341
[59] Jiang, G.; Shu, C. W., On a cell entropy inequality for discontinuous Galerkin methods, Math. Comput., 62, 531-538, (1994) · Zbl 0801.65098
[60] Jiang, G.-S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[61] Qiu, J.; Shu, C.-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193, 1, 115-135, (January 2004)
[62] Qiu, J.; Shu, C.-W., A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM J. Sci. Comput., 27, 3, 995-1013, (October 2005)
[63] Zhu, J.; Qiu, J., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method, III: unstructured meshes, J. Sci. Comput., 39, 2, 293-321, (May 2009)
[64] Zhu, J.; Qiu, J.; Shu, C.-W.; Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters, II: unstructured meshes, J. Comput. Phys., 227, 9, 4330-4353, (April 2008)
[65] Shu, C. W.; Zhu, J.; Zhong, X.; Qiu, J., Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, J. Comput. Phys., 248, 200-220, (2013) · Zbl 1349.65501
[66] Karypis, G.; Kumar, V., Multilevel k-way partitioning scheme for irregular graphs, J. Parallel Distrib. Comput., 48, 96-129, (1998)
[67] Käser, M.; Iske, A., ADER schemes on adaptive triangular meshes for scalar conservation laws, J. Comput. Phys., 205, 486-508, (2005) · Zbl 1072.65116
[68] Klaij, C.; Van der Vegt, J. J.W.; Van der Ven, H., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 217, 589-611, (2006) · Zbl 1099.76035
[69] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 3, 301-327, (2006) · Zbl 1178.76269
[70] Kopriva, D. A.; Gassner, G., On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, J. Sci. Comput., 44, 2, 136-155, (2010) · Zbl 1203.65199
[71] Krivodonova, L.; Qin, R., An analysis of the spectrum of the discontinuous Galerkin method, Appl. Numer. Math., 64, 1-18, (2013) · Zbl 1255.65166
[72] Krivodonova, L.; Xin, J.; Remacle, J.-F.; Chevaugeon, N.; Flaherty, J. E., Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Workshop on Innovative Time Integrators for PDEs, Appl. Numer. Math., 48, 3-4, 323-338, (2004) · Zbl 1038.65096
[73] Kurganov, A.; Tadmor, E., Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numer. Methods Partial Differ. Equ., 18, 584-608, (2002) · Zbl 1058.76046
[74] Landau, L. D.; Lifshitz, E. M., Fluid mechanics, course of theoretical physics, vol. 6, (2004), Elsevier Butterworth-Heinemann Oxford
[75] Liu, Y.; Vinokur, M.; Wang, Z. J., Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems, J. Comput. Phys., 212, 454-472, (2006) · Zbl 1085.65099
[76] Loubère, R., Contribution to Lagrangian and arbitrary-Lagrangian-Eulerian numerical schemes, (2013), University of Toulouse France, Habilitation à diriger des recherches
[77] Loubère, R.; Dumbser, M.; Diot, S., A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 718-763, (2014) · Zbl 1373.76137
[78] Michoski, C.; Mirabito, C.; Dawson, C.; Wirasaet, D.; Kubatko, E. J.; Westerink, J. J., Adaptive hierarchic transformations for dynamically p-enriched slope-limiting over discontinuous Galerkin systems of generalized equations, J. Comput. Phys., 230, 22, 8028-8056, (2011) · Zbl 1269.65099
[79] Von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 232-237, (1950) · Zbl 0037.12002
[80] N.C. Nguyen, J. Peraire, An adaptive shock-capturing HDG method for compressible flows presented at AIAA conference, 2011.
[81] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, AIAA Paper 2006-112, 2006.
[82] Qiu, J.; Dumbser, M.; Shu, C. W., The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Comput. Methods Appl. Mech. Eng., 194, 4528-4543, (2005) · Zbl 1093.76038
[83] Qiu, J.; Shu, C. W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193, 115-135, (2003) · Zbl 1039.65068
[84] Qiu, J.; Shu, C. W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case, Comput. Fluids, 34, 642-663, (2005) · Zbl 1134.65358
[85] Qiu, J.; Shu, C. W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26, 907-929, (2005) · Zbl 1077.65109
[86] Rault, A.; Chiavassa, G.; Donat, R., Shock-vortex interactions at high Mach numbers, J. Sci. Comput., 19, 347-371, (2003) · Zbl 1039.76047
[87] Biswas, R.; Devine, K. D.; Flaherty, J. E., Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14, 255-283, (1994) · Zbl 0826.65084
[88] Reed, W. H.; Hill, T. R., Triangular mesh methods for neutron transport equation, (1973), Los Alamos Scientific Laboratory, Technical Report LA-UR-73-479
[89] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183, 2, 508-532, (2002) · Zbl 1057.76033
[90] Rider, W. J.; Margolin, L. G., Simple modifications of monotonicity-preserving limiter, J. Comput. Phys., 174, 1, 473-488, (2001) · Zbl 1009.76067
[91] Riemann, B., Über die fortpflanzung ebener luftwellen von endlicher schwingungsweite, Gött. Nachr., 19, (1859)
[92] Riemann, B., Über die fortpflanzung ebener luftwellen von endlicher schwingungsweite, Abh. König. Ges. Wiss. Gött., 8, 43-65, (1860)
[93] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267-279, (1961)
[94] Schulz-Rinne, C. W., Classification of the Riemann problem for two-dimensional gas dynamics, SIAM J. Math. Anal., 24, 76-88, (1993) · Zbl 0811.35082
[95] Schwartzkopff, T.; Munz, C. D.; Toro, E. F., ADER: a high order approach for linear hyperbolic systems in 2d, J. Sci. Comput., 17, 1-4, 231-240, (2002) · Zbl 1022.76034
[96] Shu, C. W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (November 1997), NASA/CR-97-206253 ICASE Report No. 97-65
[97] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. Comput. Phys., 83, 32-78, (1989) · Zbl 0674.65061
[98] Sod, G. A., A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31, (1978) · Zbl 0387.76063
[99] Sonntag, M.; Munz, C. D., Shock capturing for discontinuous Galerkin methods using finite volume subcells, (Fuhrmann, J.; Ohlberger, M.; Rohde, C., Finite Volumes for Complex Applications VII, (2014), Springer), 945-953 · Zbl 1426.76429
[100] Stroud, A. H., Approximate calculation of multiple integrals, (1971), Prentice-Hall Inc. Englewood Cliffs, NJ · Zbl 0379.65013
[101] Sun, Y.; Wang, Z. J., Evaluation of discontinuous Galerkin and spectral volume methods for scalar and system conservation laws on unstructured grids, Int. J. Numer. Methods Fluids, 45, 8, 819-838, (2004) · Zbl 1085.76547
[102] Suresh, A.; Huynh, H. T., Accurate monotonicity-preserving schemes with Runge-Kutta time stepping, J. Comput. Phys., 136, 83-99, (1997) · Zbl 0886.65099
[103] Taube, A.; Dumbser, M.; Balsara, D.; Munz, C. D., Arbitrary high order discontinuous Galerkin schemes for the magnetohydrodynamic equations, J. Sci. Comput., 30, 441-464, (2007) · Zbl 1176.76075
[104] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618, (December 2002)
[105] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736, (2005) · Zbl 1060.65641
[106] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer · Zbl 0923.76004
[107] Toro, E. F.; Titarev, V. A., Solution of the generalized Riemann problem for advection-reaction equations, Proc. R. Soc. Lond., 271-281, (2002) · Zbl 1019.35061
[108] van der Vegt, J. J.W.; van der Ven, H., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows, I. general formulation, J. Comput. Phys., 182, 546-585, (2002) · Zbl 1057.76553
[109] van der Ven, H.; van der Vegt, J. J.W., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows, II. efficient flux quadrature, Comput. Methods Appl. Mech. Eng., 191, 4747-4780, (2002) · Zbl 1099.76521
[110] Wang, Z. J., Adaptive high-order methods in computational fluid dynamics, Adv. Comput. Fluid Dyn., (2011), World Scientific · Zbl 1234.76007
[111] Wang, Z. J.; Liu, Y., Extension of the spectral volume method to high-order boundary representation, J. Comput. Phys., 211, 154-178, (2006) · Zbl 1161.76536
[112] Wang, Z. J.; Zhang, L.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional Euler equations, J. Comput. Phys., 194, 716-741, (2004) · Zbl 1039.65072
[113] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173, (1984) · Zbl 0573.76057
[114] Xing, Y.; Zhang, X.; Shu, C. W., Positivity preserving high order well balanced discontinuous Galerkin methods for the shallow water equations, Adv. Water Resour., 33, 1476-1493, (2010)
[115] Zhong, X.; Shu, C.-W., A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys., 232, 1, 397-415, (January 2013)
[116] Yang, M.; Wang, Z. J., A parameter-free generalized moment limiter for high-order methods on unstructured grids, Adv. Appl. Math. Mech., 1, 4, 451-480, (2009)
[117] Zhang, X.; Shu, C. W., On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 8918-8934, (2010) · Zbl 1282.76128
[118] Zhang, X.; Shu, C. W., Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: survey and new developments, Proc. R. Soc. A, Math. Phys. Eng. Sci., 467, 2752-2776, (2011) · Zbl 1222.65107
[119] Zhu, J.; Qiu, J., Runge-Kutta discontinuous Galerkin method using WENO type limiters: three dimensional unstructured meshes, Commun. Comput. Phys., 985-1005, (2012) · Zbl 1373.76112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.