×

zbMATH — the first resource for mathematics

A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes. (English) Zbl 1349.65447
Summary: In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree \(N\) is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time \(t^{n + 1}\) for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time \(t^n\) is scattered onto small sub-cells (\(N_s = 2 N + 1\) sub-cells per element edge), in order to obtain a set of sub-cell averages at time \(t^n\). Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time \(t^n\) to time \(t^{n + 1}\). The new sub-grid data at time \(t^{n + 1}\) are finally gathered back into a valid cell-centered DG polynomial of degree \(N\) by using a classical conservative and higher order accurate finite volume reconstruction technique. Consequently, if the number \(N_s\) is sufficiently large (\(N_s \geq N + 1\)), the subscale resolution capability of the DG scheme is fully maintained, while preserving at the same time an essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG limiters only adjust the discrete solution in troubled cells, based on the limiting of higher order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at the new time \(t^{n + 1}\). Instead, our new DG limiter entirely recomputes the troubled cells by solving the governing PDE system again starting from valid data at the old time level \(t^n\), but using this time a more robust scheme on the sub-grid level. In other words, the piecewise polynomials produced by the new limiter are the result of a more robust solution of the PDE system itself, while most standard DG limiters are simply based on a mere nonlinear data post-processing of the discrete solution. Technically speaking, the new method corresponds to an element-wise checkpointing and restarting of the solver, using a lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure floating point errors like NaN values that have occurred after divisions by zero or after the computation of roots from negative numbers. This is a unique feature of our new algorithm among existing DG limiters. The new a posteriori sub-cell stabilization approach is developed within a high order accurate one-step ADER-DG framework on multidimensional unstructured meshes for hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-conservative products. The method is applied to the Euler equations of compressible gas dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-equation Baer-Nunziato model of compressible multi-phase flows. A large set of standard test problems is solved in order to assess the accuracy and robustness of the new limiter.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Software:
RIEMANN
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abgrall, R.; Karni, S., A comment on the computation of non-conservative products, J. Comput. Phys., 229, 2759-2763, (2010) · Zbl 1188.65134
[2] Burbeau, A.; Sagaut, P.; Bruneau, C. H., A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys., 169, 1, 111-150, (May 2001)
[3] Andrianov, N.; Warnecke, G., The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 212, 434-464, (2004) · Zbl 1115.76414
[4] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, 12, 861-889, (1986) · Zbl 0609.76114
[5] Balsara, D., Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151, 149-184, (2004)
[6] Balsara, D.; Altmann, C.; Munz, C. D.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes, J. Comput. Phys., 226, 586-620, (2007) · Zbl 1124.65072
[7] Balsara, D.; Shu, C. W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452, (2000) · Zbl 0961.65078
[8] Balsara, D.; Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 270-292, (1999) · Zbl 0936.76051
[9] Balsara, D. S.; Rumpf, T.; Dumbser, M.; Munz, C.-D., Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228, 2480-2516, (April 2009)
[10] Balsara, D. S., Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229, 1970-1993, (2010) · Zbl 1303.76140
[11] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 231, 7476-7503, (2012) · Zbl 1284.76261
[12] Balsara, D. S., Multidimensional Riemann problem with self-similar internal structure. part I. application to hyperbolic conservation laws on structured meshes, J. Comput. Phys., 277, 163-200, (2014) · Zbl 1349.76303
[13] Balsara, D. S.; Dumbser, M., Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers, J. Comput. Phys., 299, 687-715, (2015) · Zbl 1351.76092
[14] Balsara, D. S.; Dumbser, M., Multidimensional Riemann problem with self-similar internal structure. part II. application to hyperbolic conservation laws on unstructured meshes, J. Comput. Phys., 287, 269-292, (2015) · Zbl 1351.76091
[15] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLLC Riemann solver for unstructured meshes - with application to Euler and MHD flows, J. Comput. Phys., 261, 172-208, (2014) · Zbl 1349.76426
[16] Balsara, D. S.; Meyer, C.; Dumbser, M.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - speed comparisons with Runge-Kutta methods, J. Comput. Phys., 235, 934-969, (2013) · Zbl 1291.76237
[17] Barter, G. E.; Darmofal, D. L., Shock capturing with PDE-based artificial viscosity for DGFEM: part I. formulation, J. Comput. Phys., 229, 5, 1810-1827, (March 2010)
[18] Barth, T.; Charrier, P., Energy stable flux formulas for the discontinuous Galerkin discretization of first-order nonlinear conservation laws, (2001), NASA, Technical Report NAS-01-001
[19] Barth, T. J.; Jespersen, D. C., The design and application of upwind schemes on unstructured meshes, (1989), pp. 1-12
[20] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138, 251-285, (1997) · Zbl 0902.76056
[21] Bolemann, T.; Üffinger, M.; Sadlo, F.; Ertl, T.; Munz, C.-D., Direct visualization of piecewise polynomial data, Notes Numer. Fluid Mech. Multidiscipl. Des., 128, 535-550, (2015)
[22] Boscheri, W.; Dumbser, M., A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and nonconservative hyperbolic systems in 3D, J. Comput. Phys., 275, 484-523, (2014) · Zbl 1349.76310
[23] Casoni, E.; Peraire, J.; Huerta, A., One-dimensional shock-capturing for high-order discontinuous Galerkin methods, Int. J. Numer. Methods Fluids, 71, 6, 737-755, (2013)
[24] Castro, M. J.; Gallardo, J. M.; Marquina, A., Approximate osher-Solomon schemes for hyperbolic systems, Appl. Math. Comput., (2015)
[25] Castro, M. J.; Gallardo, J. M.; Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems, Math. Comput., 75, 1103-1134, (2006) · Zbl 1096.65082
[26] Castro, M. J.; LeFloch, P. G.; Muñoz-Ruiz, M. L.; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 227, 8107-8129, (2008) · Zbl 1176.76084
[27] Cesenek, J.; Feistauer, M., Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion, SIAM J. Numer. Anal., 50, 3, 1181-1206, (2012) · Zbl 1312.65157
[28] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 10, 4028-4050, (2011) · Zbl 1218.65091
[29] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 54, 545-581, (1990) · Zbl 0695.65066
[30] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., Discontinuous Galerkin methods, Lecture Notes in Computational Science and Engineering, (2000), Springer
[31] Cockburn, B.; Lin, S. Y.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84, 90-113, (1989) · Zbl 0677.65093
[32] Cockburn, B.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435, (1989) · Zbl 0662.65083
[33] Cockburn, B.; Shu, C. W., The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Math. Model. Numer. Anal., 25, 337-361, (1991) · Zbl 0732.65094
[34] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224, (1998) · Zbl 0920.65059
[35] Cockburn, B.; Shu, C. W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 173-261, (2001) · Zbl 1065.76135
[36] Cook, A. W.; Cabot, W. H., A high-wavenumber viscosity for high-resolution numerical methods, J. Comput. Phys., 195, 2, 594-601, (April 2004)
[37] Dahlburg, R. B.; Picone, J. M., Evolution of the orszag-Tang vortex system in a compressible medium. I. initial average subsonic flow, Phys. Fluids B, 1, 2153-2171, (1989)
[38] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673, (2002) · Zbl 1059.76040
[39] Deledicque, V.; Papalexandris, M. V., An exact Riemann solver for compressible two-phase flow models containing non-conservative products, J. Comput. Phys., 222, 217-245, (2007) · Zbl 1216.76044
[40] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63, (2012) · Zbl 1365.76149
[41] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int. J. Numer. Methods Fluids, 73, 362-392, (2013)
[42] Kuzmin, D., A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods, J. Comput. Appl. Math., 233, 12, 3077-3085, (2010) · Zbl 1252.76045
[43] Kuzmin, D., Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis, Int. J. Numer. Methods Fluids, 71, 9, 1178-1190, (2013)
[44] Kuzmin, D., Hierarchical slope limiting in explicit and implicit discontinuous Galerkin methods, J. Comput. Phys., 257, 1140-1162, (2014) · Zbl 1352.65355
[45] Dolejsi, V.; Feistauer, M.; Schwab, C., On some aspects of the discontinuous Galerkin finite element method for conservation laws, Math. Comput. Simul., 61, 3-6, 333-346, (2003) · Zbl 1013.65108
[46] Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6, 345-390, (1991) · Zbl 0742.76059
[47] Dumbser, M.; Balsara, D.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, J. Comput. Phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[48] Dumbser, M.; Balsara, D. S., A new, efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319, (2016) · Zbl 1349.76603
[49] Dumbser, M.; Boscheri, W., High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows, Comput. Fluids, 86, 405-432, (2013) · Zbl 1290.76081
[50] Dumbser, M.; Castro, M.; Parés, C.; Toro, E. F., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 1731-1748, (2009) · Zbl 1177.76222
[51] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227, 3971-4001, (2008) · Zbl 1142.65070
[52] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E. F., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647, (2010) · Zbl 1227.76043
[53] Dumbser, M.; Hidalgo, A.; Zanotti, O., High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 268, 359-387, (2014) · Zbl 1295.65088
[54] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723, (2007) · Zbl 1110.65077
[55] Dumbser, M.; Käser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226, 204-243, (2007) · Zbl 1124.65074
[56] Dumbser, M.; Munz, C. D., Building blocks for arbitrary high order discontinuous Galerkin schemes, J. Sci. Comput., 27, 215-230, (2006) · Zbl 1115.65100
[57] Dumbser, M.; Schwartzkopff, T.; Munz, C. D., Arbitrary high order finite volume schemes for linear wave propagation, (Computational Science and High Performance Computing II, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, (2006), Springer), 129-144
[58] Dumbser, M.; Toro, E. F., On universal osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 635-671, (2011) · Zbl 1373.76125
[59] Dumbser, M.; Toro, E. F., A simple extension of the osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88, (2011) · Zbl 1220.65110
[60] Dumbser, M.; Zanotti, O., Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations, J. Comput. Phys., 228, 6991-7006, (2009) · Zbl 1261.76028
[61] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D. S., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, J. Comput. Phys., 248, 257-286, (2013) · Zbl 1349.76325
[62] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75, (December 2014)
[63] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294-318, (1988) · Zbl 0642.76088
[64] Einfeldt, B.; Munz, C. D.; Roe, P. L.; Sjögreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 273-295, (1991) · Zbl 0709.76102
[65] Fechter, S.; Munz, C. D., A discontinuous Galerkin based sharp-interface method to simulate three-dimensional compressible two-phase flow, Int. J. Numer. Methods Fluids, 78, 413-435, (2015)
[66] Feistauer, M.; Kucera, V.; Najzar, K.; Prokopová, J., Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math., 117, 2, 251-288, (2011) · Zbl 1211.65125
[67] Gardiner, T.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys., 205, 509-539, (2005) · Zbl 1087.76536
[68] Gardiner, T.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport in three dimensions, J. Comput. Phys., 227, 4123-4141, (2008) · Zbl 1317.76057
[69] Gassner, G.; Dumbser, M.; Hindenlang, F.; Munz, C. D., Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J. Comput. Phys., 230, 4232-4247, (2011) · Zbl 1220.65122
[70] Gassner, G.; Lörcher, F.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion II. viscous flow equations in multi dimensions, J. Sci. Comput., 34, 260-286, (2008) · Zbl 1218.76027
[71] Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Math. USSR Sb., 47, 271-306, (1959) · Zbl 0171.46204
[72] Gottlieb, S.; Shu, C. W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73-85, (1998) · Zbl 0897.65058
[73] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303, (1987) · Zbl 0652.65067
[74] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms analysis and applications, (2008), Springer New York · Zbl 1134.65068
[75] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J. Sci. Comput., 48, 173-189, (2011) · Zbl 1221.65231
[76] Luo, H.; Baum, J. D.; Löhner, R., A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J. Comput. Phys., 225, 1, 686-713, (July 2007)
[77] Hou, S.; Liu, X. D., Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method, J. Sci. Comput., 31, 127-151, (2007) · Zbl 1152.76433
[78] Hu, C.; Shu, C. W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97-127, (1999) · Zbl 0926.65090
[79] Hu, X. Y.; Adams, N. A.; Shu, C. W., Positivity-preserving method for high-order conservative schemes solving compressible Euler equations, J. Comput. Phys., 242, 169-180, (2013) · Zbl 1311.76088
[80] Huerta, A.; Casoni, E.; Peraire, J., A simple shock-capturing technique for high-order discontinuous Galerkin methods, Int. J. Numer. Methods Fluids, 69, 10, 1614-1632, (2012) · Zbl 1253.76058
[81] Jiang, G.; Shu, C. W., On a cell entropy inequality for discontinuous Galerkin methods, Math. Comput., 62, 531-538, (1994) · Zbl 0801.65098
[82] Jiang, G. S.; Wu, C. C., A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 150, 561-594, (1999) · Zbl 0937.76051
[83] Qiu, J.; Shu, C-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193, 1, 115-135, (January 2004)
[84] Qiu, J.; Shu, C-W., A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM J. Sci. Comput., 27, 3, 995-1013, (October 2005)
[85] Baehr, J. S., A priori and a posteriori, (July 2015)
[86] Zhu, J.; Qiu, J., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method, III: unstructured meshes, J. Sci. Comput., 39, 2, 293-321, (May 2009)
[87] Zhu, J.; Qiu, J.; Shu, C. W.; Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, J. Comput. Phys., 227, 9, 4330-4353, (April 2008)
[88] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modelling of DDT in granular materials: reduced equations, Phys. Fluids, 13, 3002-3024, (2001) · Zbl 1184.76268
[89] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp element methods in CFD, (1999), Oxford University Press · Zbl 0954.76001
[90] Kemm, F., On the origin of divergence errors in MHD simulations and consequences for numerical schemes, Commun. Appl. Math. Comput. Sci., 8, 1, 1-38, (2013) · Zbl 1282.76199
[91] Kemm, F., Roe-type schemes for shallow water magnetohydrodynamics with hyperbolic divergence cleaning, Appl. Math. Comput., 272, 385-402, (2016)
[92] Klaij, C.; Van der Vegt, J. J.W.; Van der Ven, H., Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 217, 589-611, (2006) · Zbl 1099.76035
[93] Krivodonova, L.; Berger, M., High-order accurate implementation of solid wall boundary conditions in curved geometries, J. Comput. Phys., 211, 492-512, (2006) · Zbl 1138.76403
[94] Krivodonova, L.; Xin, J.; Remacle, J.-F.; Chevaugeon, N.; Flaherty, J. E., Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Workshop on Innovative Time Integrators for PDEs, Appl. Numer. Math., 48, 3-4, 323-338, (2004) · Zbl 1038.65096
[95] Kurganov, A.; Petrova, G.; Popov, B., Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws, SIAM J. Sci. Comput., 29, 2381-2401, (2007) · Zbl 1154.65356
[96] Liu, Y.; Vinokur, M.; Wang, Z. J., Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems, J. Comput. Phys., 212, 454-472, (2006) · Zbl 1085.65099
[97] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 879-896, (September 2007)
[98] Lörcher, F.; Gassner, G.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion. I. inviscid compressible flow in one space dimension, J. Sci. Comput., 32, 175-199, (2007) · Zbl 1143.76047
[99] Loubère, R., Contribution to Lagrangian and arbitrary-Lagrangian-Eulerian numerical schemes, (2013), University of Toulouse France, Habilitation à diriger des recherches
[100] Loubère, R.; Dumbser, M.; Diot, S., A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 718-763, (2014) · Zbl 1373.76137
[101] M. Yang, Z.J. Wang, A parameter-free generalized moment limiter for high-order methods on unstructured grids, in: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2009-605, http://dx.doi.org/10.2514/6.2009-605.
[102] Dal Maso, G.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548, (1995) · Zbl 0853.35068
[103] Meister, A.; Ortleb, S., A positivity preserving and well-balanced DG scheme using finite volume subcells in almost dry regions, Appl. Math. Comput., 272, 259-273, (2016)
[104] Müller, L. O.; Parés, C.; Toro, E. F., Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties, J. Comput. Phys., 242, 53-85, (2013) · Zbl 1323.92066
[105] Müller, L. O.; Toro, E. F., Well-balanced high-order solver for blood flow in networks of vessels with variable properties, Int. J. Numer. Methods Biomed. Eng., 29, 12, 1388-1411, (2013)
[106] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664-698, (2005) · Zbl 1061.76083
[107] Von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 232-237, (1950) · Zbl 0037.12002
[108] Orszag, S. A.; Tang, C. M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129, (1979)
[109] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321, (2006) · Zbl 1130.65089
[110] Persson, P. O.; Peraire, J., Sub-cell shock capturing for discontinuous Galerkin methods, (2006), AIAA Paper 2006-112
[111] Picone, J. M.; Dahlburg, R. B., Evolution of the orszag-Tang vortex system in a compressible medium. II. supersonic flow, Phys. Fluids B, 3, 29-44, (1991)
[112] Qiu, J.; Dumbser, M.; Shu, C. W., The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Comput. Methods Appl. Mech. Eng., 194, 4528-4543, (2005) · Zbl 1093.76038
[113] Qiu, J.; Shu, C. W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193, 115-135, (2003) · Zbl 1039.65068
[114] Qiu, J.; Shu, C. W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case, Comput. Fluids, 34, 642-663, (2005) · Zbl 1134.65358
[115] Qiu, J.; Shu, C. W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26, 907-929, (2005) · Zbl 1077.65109
[116] Biswas, R.; Devine, K. D.; Flaherty, J. E., Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14, 255-283, (1994) · Zbl 0826.65084
[117] Reed, W. H.; Hill, T. R., Triangular mesh methods for neutron transport equation, (1973), Los Alamos Scientific Laboratory, Technical Report LA-UR-73-479
[118] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183, 2, 508-532, (2002) · Zbl 1057.76033
[119] Rhebergen, S.; Bokhove, O.; van der Vegt, J. J.W., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., 227, 1887-1922, (2008) · Zbl 1153.65097
[120] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267-279, (1961)
[121] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467, (1999) · Zbl 0937.76053
[122] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115-1145, (1999) · Zbl 0957.76057
[123] Schwartzkopff, T.; Munz, C. D.; Toro, E. F., ADER: a high order approach for linear hyperbolic systems in 2D, J. Sci. Comput., 17, 1-4, 231-240, (2002) · Zbl 1022.76034
[124] Schwendeman, D. W.; Wahle, C. W.; Kapila, A. K., The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys., 212, 490-526, (2006) · Zbl 1161.76531
[125] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471, (1988) · Zbl 0653.65072
[126] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. Comput. Phys., 83, 32-78, (1989) · Zbl 0674.65061
[127] Sod, G. A., A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31, (1978) · Zbl 0387.76063
[128] Sonntag, M.; Munz, C. D., Shock capturing for discontinuous Galerkin methods using finite volume subcells, (Fuhrmann, J.; Ohlberger, M.; Rohde, C., Finite Volumes for Complex Applications VII, (2014), Springer), 945-953 · Zbl 1426.76429
[129] Taube, A.; Dumbser, M.; Balsara, D.; Munz, C. D., Arbitrary high order discontinuous Galerkin schemes for the magnetohydrodynamic equations, J. Sci. Comput., 30, 441-464, (2007) · Zbl 1176.76075
[130] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618, (December 2002)
[131] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736, (2005) · Zbl 1060.65641
[132] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165, (2006) · Zbl 1087.65590
[133] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (2009), Springer · Zbl 1227.76006
[134] Toro, E. F.; Titarev, V. A., Solution of the generalized Riemann problem for advection-reaction equations, Proc. R. Soc. Lond., 271-281, (2002) · Zbl 1019.35061
[135] van der Vegt, J. J.W.; van der Ven, H., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. general formulation, J. Comput. Phys., 182, 546-585, (2002) · Zbl 1057.76553
[136] van der Ven, H.; van der Vegt, J. J.W., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. efficient flux quadrature, Comput. Methods Appl. Mech. Eng., 191, 4747-4780, (2002) · Zbl 1099.76521
[137] Vuik, M. J.; Ryan, J. K., Automated parameters for troubled-cell indicators using outlier detection, SIAM J. Sci. Comput., 38, 1, A84-A104, (2016) · Zbl 1330.65155
[138] Wang, Z. J., Adaptive high-order methods in computational fluid dynamics, Advances in Computational Fluid Dynamics, (2011), World Scientific · Zbl 1234.76007
[139] Wang, Z. J.; Zhang, L.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional Euler equations, J. Comput. Phys., 194, 716-741, (2004) · Zbl 1039.65072
[140] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173, (1984) · Zbl 0573.76057
[141] Yang, M.; Wang, Z., A parameter-free generalized moment limiter for high-order methods on unstructured grids, Adv. Appl. Math. Mech., (2009)
[142] Zanotti, O.; Fambri, F.; Dumbser, M., Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement, Mon. Not. R. Astron. Soc., 452, 3010-3029, (2015)
[143] Zanotti, O.; Fambri, F.; Dumbser, M.; Hidalgo, A., Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori subcell finite volume limiting, Comput. Fluids, 118, 204-224, (2015) · Zbl 1390.76381
[144] Zhang, X.; Shu, C. W., On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 8918-8934, (2010) · Zbl 1282.76128
[145] Zhang, X.; Shu, C. W., Positivity-preserving high order finite difference WENO schemes for compressible Euler equations, J. Comput. Phys., 231, 2245-2258, (2012) · Zbl 1426.76493
[146] Zhong, X.; Shu, C. W., A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys., 232, 1, 397-415, (January 2013)
[147] Zhu, J.; Qiu, J., Runge-Kutta discontinuous Galerkin method using WENO type limiters: three dimensional unstructured meshes, Commun. Comput. Phys., 985-1005, (2012) · Zbl 1373.76112
[148] Zhu, J.; Zhong, X.; Shu, C. W.; Qiu, J., Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, J. Comput. Phys., 248, 200-220, (2013) · Zbl 1349.65501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.