zbMATH — the first resource for mathematics

Time asynchronous relative dimension in space method for multi-scale problems in fluid dynamics. (English) Zbl 1349.65321
Summary: A novel computational method is presented for solving fluid dynamics equations in the multi-scale framework when the system size is an important parameter of the governing equations. The method (TARDIS) is based on a concurrent transformation of the governing equations in space and time and solving the transformed equations on a uniform Cartesian grid with the corresponding causality conditions at the grid interfaces. For implementation in the framework of TARDIS, the second-order CABARET scheme of Karabasov and Goloviznin [1] is selected for it provides a good combination of numerical accuracy, computational efficiency and simplicity of realisation. Numerical examples are first provided for several isothermal gas dynamics test problems and then for modelling of molecular fluctuations inside a microscopic flow channel and ultrasound wave propagation through a nano-scale region of molecular fluctuations.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI
[1] Karabasov, S. A.; Goloviznin, V. M., Compact accurately boundary adjusting high-resolution technique for fluid dynamics, J. Comput. Phys., 228, 7426-7451, (2009) · Zbl 1172.76034
[2] Pirozzoli, S., Numerical methods for high-speed flows, Annu. Rev. Fluid Mech., 43, 163-194, (2011) · Zbl 1299.76103
[3] Dawson, C.; Kirby, R., High resolution schemes for conservation laws with locally varying time steps, SIAM J. Sci. Comput., 22, 2256-2281, (2001) · Zbl 0980.35015
[4] Omelchenko, Y. A.; Karimabadi, H., Self-adaptive time integration of flux-conservative equations with sources, J. Comput. Phys., 216, 179-194, (2006) · Zbl 1093.65083
[5] Omelchenko, Y. A.; Karimabadi, H., A time-accurate explicit multi-scale technique for gas dynamics, J. Comput. Phys., 226, 282-300, (2007) · Zbl 1262.76079
[6] Tam, C. K.W.; Kurbatskii, K. A., Multi-size-mesh multi-time-step dispersion-relation-preserving scheme for multiple-scales aeroacoustics problems, Int. J. Comput. Fluid Dyn., 17, 2, 119-132, (2003) · Zbl 1115.76376
[7] Chang, S.-C.; Wu, Y.; Yang, V.; Wang, X.-Y., Local time-stepping procedures for the space-time conservation element and solution element method, Int. J. Comput. Fluid Dyn., 19, 5, 359-380, (2005) · Zbl 1184.76736
[8] Jacques, J. R., The noise from moving aircraft: some relevant models, (1975), University of Cambridge, PhD dissertation
[9] Drevet, P.; Duponchel, J. P.; Jacques, J. R., The effect of flight on jet noise as observed on the bertin Aérotrain, J. Sound Vib., 54, 2, 173-201, (1977)
[10] Landau, L. D.; Lifshitz, E. M., Fluid mechanics, (1959), Pergamon New York
[11] Ladd, A. J.C., Short-time motion of colloidal particles: numerical simulation via a fluctuating lattice-Boltzmann equation, Phys. Rev. Lett., 70, 1339-1342, (1993)
[12] Ladd, A. J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. numerical results, J. Fluid Mech., 271, 311-339, (1994) · Zbl 0815.76085
[13] Hoogerbrugge, P. J.; Koelman, J. M.V. A., Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett., 19, 3, 155, (1992)
[14] Español, P., Dissipative particle dynamics with energy conservation, Europhys. Lett., 40, 631, (1997)
[15] Español, P.; Serrano, M.; Öttinger, H. C., Phys. Rev. Lett., 83, 4542-4545, (1999)
[16] Ahlrichs, P.; Dünweg, B., Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics, J. Chem. Phys., 111, 8225-8239, (1999)
[17] Usta, O. B.; Ladd, A. J.; Butler, J. E., Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries, J. Chem. Phys., 122, 9, 094902, (2005)
[18] Markesteijn, A. P.; Usta, O. B.; Ali, I.; Balazs, A. C.; Yeomans, J. M., Flow injection of polymers into nanopores, Soft Matter, 5, 4575-4579, (2009)
[19] De Fabritiis, G.; Delgado-Buscalioni, R.; Coveney, P. V., Multiscale modeling of liquids with molecular specificity, Phys. Rev. Lett., 97, 134501, (2006)
[20] Giupponi, G.; De Fabritiis, G.; Coveney, P. V., Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules, J. Chem. Phys., 126, 154903, (2007)
[21] De Fabritiis, G.; Serrano, M.; Delgado-Buscalioni, R.; Coveney, P. V., Fluctuating hydrodynamic modeling of fluids at the nanoscale, Phys. Rev. E, 75, 026307, (2007)
[22] Delgado-Buscalioni, R.; Dejoan, A., Nonreflecting boundaries for ultrasound in fluctuating hydrodynamics of open systems, Phys. Rev. E, 78, 046708, (2008)
[23] Voulgarakis, N. K.; Chu, J.-W., Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids, J. Chem. Phys., 130, 134111, (2009)
[24] Donev, A.; Bell, J. B.; Garcia, A. L.; Alder, B. J., A hybrid particle-continuum method for hydrodynamics of complex fluids, Multiscale Model. Simul., 8, 871-911, (2010) · Zbl 1248.76119
[25] De Fabritiis, G.; Serrano, M.; Español, P.; Coveney, P. V., Efficient numerical integrators for stochastic models, Physica A, 361, 429-440, (2006) · Zbl 1102.82022
[26] Serrano, M.; De Fabritiis, G.; Español, P.; Coveney, P. V., Math. Comput. Simul., 72, 190, (2006)
[27] Bell, J. B.; Garcia, A. L.; Williams, S. A., Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations, Phys. Rev. E, 76, 016708, (2007)
[28] Donev, A.; Vanden-Eijnden, E.; Garcia, A.; Bell, J., On the accuracy of explicit finite-volume schemes for fluctuating hydrodynamics, Commun. Appl. Math. Comput. Sci., 5, 149-197, (2010) · Zbl 1277.76089
[29] Goloviznin, V. M.; Samarskii, A. A., Difference approximation of convective transport with spatial splitting of time derivative, Math. Model., 10, 1, 86-100, (1998) · Zbl 1189.76364
[30] Karabasov, S. A.; Goloviznin, V. M., New efficient high-resolution method for nonlinear problems in aeroacoustics, AIAA J., 45, 12, (2007)
[31] Williams, E. G., Fourier acoustics: sound radiation and nearfield acoustical, (1999), Academic Press
[32] Koplik, J.; Banavar, J. R.; Willemsen, J. F., Molecular dynamics of Poiseuille flow and moving contact lines, Phys. Rev. Lett., 60, 13, 1282-1285, (1987)
[33] Markesteijn, A. P.; Hartkamp, R.; Luding, S.; Westerweel, J., A comparison of the value of viscosity for several water models using Poiseuille flow in a nano channel, J. Chem. Phys., 136, 13, 134104, (2012)
[34] Berloff, P.; Karabasov, S.; Farrar, T.; Kamenkovich, I., On latency of multiple zonal jets in the oceans, J. Fluid Mech., 686, 534-567, (2011) · Zbl 1241.76427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.