Delaigle, Aurore; Hall, Peter; Zhou, Wen-Xin Nonparametric covariate-adjusted regression. (English) Zbl 1349.62097 Ann. Stat. 44, No. 5, 2190-2220 (2016). Summary: We consider nonparametric estimation of a regression curve when the data are observed with multiplicative distortion which depends on an observed confounding variable. We suggest several estimators, ranging from a relatively simple one that relies on restrictive assumptions usually made in the literature, to a sophisticated piecewise approach that involves reconstructing a smooth curve from an estimator of a constant multiple of its absolute value, and which can be applied in much more general scenarios. We show that, although our nonparametric estimators are constructed from predictors of the unobserved undistorted data, they have the same first-order asymptotic properties as the standard estimators that could be computed if the undistorted data were available. We illustrate the good numerical performance of our methods on both simulated and real datasets. Cited in 18 Documents MSC: 62G05 Nonparametric estimation 62G08 Nonparametric regression and quantile regression 62G20 Asymptotic properties of nonparametric inference Keywords:discontinuities; local linear estimator; multiplicative distortion; Nadaraya-Watson estimator; nonparametric smoothing; predictors PDF BibTeX XML Cite \textit{A. Delaigle} et al., Ann. Stat. 44, No. 5, 2190--2220 (2016; Zbl 1349.62097) Full Text: DOI arXiv