zbMATH — the first resource for mathematics

On regularizations of the Dirac delta distribution. (English) Zbl 1349.35008
Summary: In this article we consider regularizations of the Dirac delta distribution with applications to prototypical elliptic and hyperbolic partial differential equations (PDEs). We study the convergence of a sequence of distributions \(\mathcal{S}_H\) to a singular term \(\mathcal{S}\) as a parameter \(H\) (associated with the support size of \(\mathcal{S}_H\)) shrinks to zero. We characterize this convergence in both the weak-topology of distributions and a weighted Sobolev norm. These notions motivate a framework for constructing regularizations of the delta distribution that includes a large class of existing methods in the literature. This framework allows different regularizations to be compared. The convergence of solutions of PDEs with these regularized source terms is then studied in various topologies such as pointwise convergence on a deleted neighborhood and weighted Sobolev norms. We also examine the lack of symmetry in tensor product regularizations and effects of dissipative error in hyperbolic problems.

35A35 Theoretical approximation in context of PDEs
35A08 Fundamental solutions to PDEs
Chebfun; Matlab
Full Text: DOI arXiv
[1] Agnelli, J. P.; Garau, E. M.; Morin, P., A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces, ESAIM: Math. Model. Numer. Anal., 48, 1557-1581, (2014) · Zbl 1305.35026
[2] Aheizer, N. I.; Krein, M., Some questions in the theory of moments, Translations of Mathematical Monographs, vol. 2, (1962), American Mathematical Society Providence, RI
[3] Beale, J. T.; Majda, A., Vortex methods. II. higher order accuracy in two and three dimensions, Math. Comput., 39, 29-52, (1982) · Zbl 0488.76025
[4] Benvenuti, E., A regularized XFEM framework for embedded cohesive interfaces, Comput. Methods Appl. Mech. Eng., 2008, 4367-4378, (2008) · Zbl 1194.74364
[5] Benvenuti, E.; Ventura, G.; Ponara, N.; Tralli, A., Accuracy of three-dimensional analysis of regularized singularities, Int. J. Numer. Methods Eng., 101, 29-53, (2014) · Zbl 1352.65080
[6] Beyer, R. P.; LeVeque, R. J., Analysis of a one-dimensional model for the immersed boundary method, SIAM J. Numer. Anal., 29, 2, 332-364, (1992) · Zbl 0762.65052
[7] Boffi, D.; Gastaldi, L., A finite element approach for the immersed boundary method, Comput. Struct., 81, 8-11, 491-501, (2003)
[8] Boffi, D.; Gastaldi, L., Discrete models for fluid-structure interactions: the finite element immersed boundary method, (July 2014), vol. 20
[9] Brezis, H., Functional analysis, Sobolev spaces and partial differential equations, (2011), Springer Science & Business Media New York · Zbl 1220.46002
[10] Cortez, R.; Minion, M., The blob projection method for immersed boundary problems, J. Comput. Phys., 161, 2, 428-453, (2000) · Zbl 0962.74078
[11] D’Angelo, C., Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems, SIAM J. Numer. Anal., 50, 1, 194-215, (2012) · Zbl 1246.65215
[12] (July 2013), deal.ii finite element package, version 8.0.0
[13] Drazin, P. G.; Johnson, R. S., Solitons: an introduction, vol. 2, (1989), Cambridge University Press Cambridge · Zbl 0661.35001
[14] (Driscoll, T. A.; Hale, N.; Trefethen, L. N., Chebfun Guide, (2014), Pafnuty Publications Oxford)
[15] Duffy, D. G., Green’s functions with applications, (2010), CRC Press
[16] Engquist, B.; Tornberg, A.-K.; Tsai, R., Discretization of Dirac delta functions in level set methods, J. Comput. Phys., 207, 28-51, (2005) · Zbl 1074.65025
[17] Evans, L. C., Partial differential equations, Graduate Studies in Mathematics, vol. 19, (2010), American Mathematical Society Providence, RI
[18] Fabes, E. B.; Kenig, C. E.; Serapioni, R. P., The local regularity of solutions of degenerate elliptic equations, Commun. Partial Differ. Equ., 7, 1, 77-116, (1982) · Zbl 0498.35042
[19] Friedman, A., Generalized functions and partial differential equations, (2005), Dover Publications New York
[20] Gel’fand, I. M.; Vilenkin, N. Y., Generalized functions, vol. 4: applications of harmonic analysis, (1964), Academic Press New York · Zbl 0136.11201
[21] Heinonen, J.; Kilpeläinen, T.; Martio, O., Nonlinear potential theory for degenerate elliptic equations, (1993), Oxford Science Publications · Zbl 0780.31001
[22] Kabanikhin, S. I., Inverse and ill-posed problems: theory and applications, Inverse and Ill-Posed Problems Series, vol. 55, (2011), Walter De Gruyter
[23] Liu, Y.; Mori, Y., Properties of discrete delta functions and local convergence of the immersed boundary method, SIAM J. Numer. Anal., 50, 6, 2986-3015, (2012) · Zbl 1268.65143
[24] Liu, Y.; Mori, Y., \(L^p\) convergence of the immersed boundary method for stationary Stokes problems, SIAM J. Numer. Anal., 52, 1, 496-514, (2014) · Zbl 1427.76211
[25] McLean, W., Strongly elliptic systems and boundary integral equations, (2000), Cambridge University Press · Zbl 0948.35001
[26] Mori, Y., Convergence proof of the velocity field for a Stokes flow immersed boundary method, Commun. Pure Appl. Math., LXI, 1213-1263, (2008) · Zbl 1171.76042
[27] Osher, S. J.; Fedkiw, R. P., Level set methods and dynamic implicit surfaces, (2003), Springer Science & Business Media New York · Zbl 1026.76001
[28] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517, (2002) · Zbl 1123.74309
[29] Suarez, J.-P.; Jacobs, G. B.; Don, W.-S., A high-order Dirac-delta regularization with optimal scaling in the spectral solution of one-dimensional singular hyperbolic conservation laws, SIAM J. Sci. Comput., 36, 4, A1831-A1849, (2014) · Zbl 1308.65173
[30] Tornberg, A.-K., Multi-dimensional quadrature of singular and discontinuous functions, BIT, 42, 3, 644-6695, (2002)
[31] Tornberg, A.-K.; Engquist, B., Regularization techniques for numerical approximation of PDEs with singularities, J. Sci. Comput., 19, 1-3, 527-552, (2003) · Zbl 1035.65085
[32] Tornberg, A.-K.; Engquist, B., Numerical approximations of singular source terms in differential equations, J. Comput. Phys., 200, 2, 462-488, (2004) · Zbl 1115.76392
[33] Trefethen, L. N., Spectral methods in MATLAB, (2000), SIAM Philadelphia, PA · Zbl 0953.68643
[34] Waldén, J., On the approximation of singular source terms in differential equations, Numer. Methods Partial Differ. Equ., 15, 4, 503-520, (1999) · Zbl 0938.65112
[35] Yang, Y.; Shu, C.-W., Discontinuous Galerkin method for hyperbolic equations involving δ-singularities: negative-order norm error estimates and applications, Numer. Math., 124, 4, 753-781, (2013) · Zbl 1273.65152
[36] Zahedi, S.; Tornberg, A.-K., Delta function approximations in level set methods by distance function extension, J. Comput. Phys., 229, 2199-2219, (2010) · Zbl 1186.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.