×

Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. (English) Zbl 1349.34213

Summary: In this paper, we study the hybrid projective synchronization problem for a class of fractional-order memristor-based neural networks with time delays. First, we address the basic ideas of fractional-order memristor-based neural networks (FMNNs) with hub structure and time delays. After that we derive the response system can be synchronized from the corresponding drive system, that is, the response system can be synchronized with the projection of the drive system generated through a design scaling matrix which is known as hybrid projective synchronization. By applying the Filippovs solutions, differential inclusion theory, stability theorem of linear fractional-order systems with multiple time delays and employing suitable linear feedback control law, some new sufficient conditions are derived to guaranteeing the projective synchronization of addressed FMNNs with hub structure and time delays. The analysis in this paper is based on the theory of fractional-order differential equations with discontinuous right-hand sides. Finally, a numerical example is presented to show the usefulness of our theoretical results.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34A08 Fractional ordinary differential equations
34B45 Boundary value problems on graphs and networks for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Driscoll, T., Quinn, J., Klein, S., Kim, H.T., Kim, B.J., Pershin, Y.V., Ventra, M.D., Basov, D.N.: Memristive adaptive filters. Appl. Phys. Lett. 97, 093502 (2010) · doi:10.1063/1.3485060
[2] Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881-886 (2010) · doi:10.1016/j.neunet.2010.05.001
[3] Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507-519 (1971) · doi:10.1109/TCT.1971.1083337
[4] Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80-83 (2008) · doi:10.1038/nature06932
[5] Tour, J.M., He, T.: The fourth element. Nature 453, 42-43 (2008) · doi:10.1038/453042a
[6] Wu, A., Zeng, Z.: Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Netw. 36, 1-10 (2012) · Zbl 1258.34165 · doi:10.1016/j.neunet.2012.08.009
[7] Wu, A., Zhang, J., Zeng, Z.: Dynamic behaviors of a class of memristor-based Hopfield networks. Phy. Lett. A 375, 1661-1665 (2011) · Zbl 1242.82035 · doi:10.1016/j.physleta.2011.02.068
[8] Rakkiyappan, R., Velmurugan, G., Cao, J.: Stability analysis of memristor-based fractional-order neural networks with different memductance functions. Cogn. Neurodyn. 9, 145-177 (2015) · Zbl 1331.34154
[9] Qi, J., Li, C., Huang, T.: Stability of delayed memristive neural networks with time-varying impulses. Cogn. Neurodyn. 8, 429-436 (2014) · doi:10.1007/s11571-014-9286-0
[10] Li, X., Rakkiyappan, R., Velmurugan, G.: Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays. Inf. Sci. 294, 645-665 (2015) · Zbl 1360.93638 · doi:10.1016/j.ins.2014.07.042
[11] Rakkiyappan, R., Velmurugan, G., Cao, J.: Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn. 78, 2823-2836 (2014) · Zbl 1331.34154 · doi:10.1007/s11071-014-1628-2
[12] Rakkiyappan, R., Cao, J., Velmurugan, G.: Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 84-97 (2015) · Zbl 1353.34098 · doi:10.1109/TNNLS.2014.2311099
[13] Yang, X., Cao, J., Yu, W.: Exponential synchronization of memristive Cohen-Grossberg neural networks with mixed delays. Cogn. Neurodyn. 8, 239-249 (2014) · doi:10.1007/s11571-013-9277-6
[14] Wu, A., Wen, S., Zeng, Z.: Synchronization control of a class of memristor-based recurrent neural networks. Inf. Sci. 183, 106-116 (2012) · Zbl 1243.93049 · doi:10.1016/j.ins.2011.07.044
[15] Wu, A., Zeng, Z.: Anti-synchronization control of a class of memristive recurrent neural networks. Commun. Nonlinear Sci. Numer. Simul. 18, 373-385 (2013) · Zbl 1279.94157 · doi:10.1016/j.cnsns.2012.07.005
[16] Li, N., Cao, J.: New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes. Neural Netw. 61, 1-9 (2015) · Zbl 1323.93041 · doi:10.1016/j.neunet.2014.08.015
[17] Wu, H., Li, R., Yao, R., Zhang, X.: Weak, modified and function projective synchronization of chaotic memristive neural networks with time delays. Neurocomputing 149, 667-676 (2015) · doi:10.1016/j.neucom.2014.08.008
[18] Wang, L., Shen, Y., Yin, Q., Zhang, G.: Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 2033-2042 (2015)
[19] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[20] Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 294-298 (1984) · Zbl 0544.73052 · doi:10.1115/1.3167616
[21] Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971) · JFM 30.0801.03
[22] Petras, I.: A note on the fractional-order cellular neural networks. In: International joint conference on neural networks, pp. 1021-1024 (2006)
[23] Li, Y., Chen, Y., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[24] Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[25] Shen, J., Lam, J.: Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50, 547-551 (2014) · Zbl 1364.93690 · doi:10.1016/j.automatica.2013.11.018
[26] Lundstrom, B., Higgs, M., Spain, W., Fairhall, A.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335-1342 (2008) · doi:10.1038/nn.2212
[27] Boroomand, A., Menhaj, M.: Fractional-order Hopfield neural networks. Lect. Notes Comput. Sci. 5506, 883-890 (2009) · doi:10.1007/978-3-642-02490-0_108
[28] Chen, L., Chai, Y., Wu, R., Ma, T., Zhai, H.: Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111, 190-194 (2013) · doi:10.1016/j.neucom.2012.11.034
[29] Wu, R.C., Hei, X.D., Chen, L.P.: Finite-time stability of fractional-order neural networks with delay. Commun. Theor. Phys. 60, 189-193 (2013) · Zbl 1284.92016 · doi:10.1088/0253-6102/60/2/08
[30] Wang, H., Yu, Y., Wen, G.: Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw. 55, 98-109 (2014) · Zbl 1322.93089 · doi:10.1016/j.neunet.2014.03.012
[31] Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245-256 (2012) · Zbl 1254.34103 · doi:10.1016/j.neunet.2012.02.030
[32] Wang, H., Yu, Y., Wen, G., Zhang, S.: Stability analysis of fractional-order neural networks with time delay. Neural Process. Lett. (2014). doi:10.1007/s11063-014-9368-3
[33] Velmurugan, G., Rakkiyappan, R.: Hybrid projective synchronization of fractional-order neural networks with time delays. Mathematical Analysis and its Applications. In: Proceedings in Mathematics & Statistics, Springer, p. 143. doi:10.1007/978-81-322-2485-3 · Zbl 1338.34151
[34] Zhang, Z., Huang, J., Liu, Z., Sun, M.: Boundary stabilization of a nonlinear viscoelastic equation with interior time-varying delay and nonlinear dissipative boundary feedback. Abstr. Appl. Anal. 2014, Article ID: 102594, pp. 1-14 (2014) · Zbl 1470.93131
[35] Zhang, Z., Liu, Z., Miao, X., Chen, Y.: Stability analysis of heat flow with boundary time-varying delay effect. Nonlinear Anal. Theor. 73, 1878-1889 (2010) · Zbl 1195.35052 · doi:10.1016/j.na.2010.05.022
[36] Perora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[37] Zhu, H., He, Z.S., Zhou, S.B.: Lag synchronization of the fractional-order system via nonlinear observer. Int. J. Mod. Phys. B 25, 3951-3964 (2011) · Zbl 1247.34099 · doi:10.1142/S0217979211102253
[38] Taghvafard, H., Erjaee, G.H.: Phase and anti-phase synchronization of fractional order chaotic systems via active control. Commun. Nonlinear Sci. Numer. Simul. 16, 4079-4088 (2011) · Zbl 1221.65320 · doi:10.1016/j.cnsns.2011.02.015
[39] Wang, B., Jian, J., Yu, H.: Adaptive synchronization of fractional-order memristor-based Chua’s system. Syst. Sci. Control Eng. 2, 291-296 (2014) · doi:10.1080/21642583.2014.900656
[40] Wang, X.Y., He, Y.J.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372, 435-441 (2008) · Zbl 1217.37035 · doi:10.1016/j.physleta.2007.07.053
[41] Kuntanapreeda, S.: Robust synchronization of fractional-order unified chaotic systems via linear control. Comput. Math. Appl. 63, 183-190 (2012) · Zbl 1238.93045 · doi:10.1016/j.camwa.2011.11.007
[42] Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3024-3045 (1999) · doi:10.1103/PhysRevLett.82.3042
[43] Chee, C. Y., Xu, D.: Chaos-based M-nary digital communication technique using controller projective synchronization. In: IEE Proceedings G (Circuits, Devices and Systems) 153, pp. 357-360 (2006)
[44] Wang, S., Yu, Y., Wen, G.: Hybrid projective synchronization of time-delayed fractional-order chaotic systems. Nonlinear Anal. Hybrid Syst. 11, 129-138 (2014) · Zbl 1303.37015 · doi:10.1016/j.nahs.2013.07.004
[45] Yu, J., Hu, C., Jiang, H., Fan, X.: Projective synchronization for fractional neural networks. Neural Netw. 49, 87-95 (2014) · Zbl 1296.34133 · doi:10.1016/j.neunet.2013.10.002
[46] Wang, S., Yu, Y.G., Diao, M.: Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Phys. A 389, 4981-4988 (2010) · Zbl 0765.22013 · doi:10.1016/j.physa.2010.06.048
[47] Zhou, P., Zhu, W.: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal. Real World Appl. 12, 811-816 (2011) · Zbl 1209.34065 · doi:10.1016/j.nonrwa.2010.08.008
[48] Wang, X.Y., Zhang, X.P., Ma, C.: Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn. 69, 511-517 (2012) · Zbl 1253.93023 · doi:10.1007/s11071-011-0282-1
[49] Chen, J., Zeng, Z., Jiang, P.: Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 51, 1-8 (2014) · Zbl 1306.34006 · doi:10.1016/j.neunet.2013.11.016
[50] Bao, H.B., Cao, J.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1-9 (2015) · Zbl 1323.93036 · doi:10.1016/j.neunet.2014.10.007
[51] Bhalekar, S., Daftardar-Gejji, V.: A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1, 1-8 (2011) · Zbl 1488.65209
[52] Aubin, J., Frankowsaka, H.: Set-Valued Analysis. Springer, New York (2009) · doi:10.1007/978-0-8176-4848-0
[53] Filippov, A.F.: Differential equations with discontinuous right-hand side. Mat. Sb. 93, 99-128 (1960) · Zbl 0138.32204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.