×

zbMATH — the first resource for mathematics

Fuzzy games for a general Bayesian abstract fuzzy economy model of product measurable spaces. (English) Zbl 1348.91203
Summary: In this paper, we introduce a general Bayesian abstract fuzzy economy model of product measurable spaces, and we prove the existence of Bayesian fuzzy equilibrium for this model. Our results extend and improve the corresponding recent results announced by Patriche and many authors from the literature. It captures the idea that the uncertainties characterize the individual feature of the decisions of the agents involved in different economic activities. In this paper, the uncertainties can be described by using random fuzzy mappings. Further attention is needed for the study of applications of the established result in the game theory and the fuzzy economic field.

MSC:
91B52 Special types of economic equilibria
91A80 Applications of game theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, U.S.A. 36 (1) pp 48– (1950) · Zbl 0036.01104 · doi:10.1073/pnas.36.1.48
[2] Debreu, A socail equilibrium existence theorem, Proceedings of the National Academy of Sciences, U.S.A. 38 pp 886– (1952) · Zbl 0047.38804 · doi:10.1073/pnas.38.10.886
[3] Arrow, Existence of an equilibrium for a competitive economy, Econometrica 22 pp 265– (1952) · Zbl 0055.38007 · doi:10.2307/1907353
[4] Shafer, Equilibrium in abstract economies without ordered preferences, Journal of Mathematical Economics 2 pp 345– (1975) · Zbl 0312.90062 · doi:10.1016/0304-4068(75)90002-6
[5] Borglin, Existence of equilibrium actions and of equilibrium: a note on the ”new” existence theorem, Journal of Mathematical Economics 3 pp 313– (1976) · Zbl 0349.90157 · doi:10.1016/0304-4068(76)90016-1
[6] Huang, Some new equilibrium theorems for abstract economies, Applied Mathematics Letters 11 (1) pp 41– (1998) · Zbl 1075.91580 · doi:10.1016/S0893-9659(97)00130-4
[7] Kim, New existence theorems of equilibria and applications, Nonlinear Analysis: Theory, Methods and Applications 47 pp 531– (2001) · Zbl 1042.47534 · doi:10.1016/S0362-546X(01)00198-5
[8] Lin, Generalized abstract economy and systems of generalized vector quasi-equilibrium problems, Journal of Computational and Applied Mathematics 208 pp 341– (2007) · Zbl 1124.91046 · doi:10.1016/j.cam.2006.10.002
[9] Briec, C: Nash points, Ky Fan inequality and equilibria of abstract economies in Max-Plus and B-convexity, Journal of Mathematical Analysis and Applications 341 pp 188– (2008) · Zbl 1151.91017 · doi:10.1016/j.jmaa.2007.09.056
[10] Ding, Fixed points, minimax inequalities and equilibria of noncompact abstract economies in FC-spaces, Nonlinear Analysis: Theory, Methods and Applications 69 pp 730– (2008) · Zbl 1157.47037 · doi:10.1016/j.na.2007.06.006
[11] Kim, On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Analysis: Theory, Methods and Applications 68 pp 2216– (2008) · Zbl 1136.91309 · doi:10.1016/j.na.2007.01.057
[12] Lin, The study of abstract economies with two constraint correspondences, Journal of Optimization Theory and Applications 137 pp 41– (2008) · Zbl 1141.91034 · doi:10.1007/s10957-007-9285-y
[13] Ding, Fixed point theorems and existence of equilibrium points of noncompact abstract economies for LF-majorized mappings in FC-spaces, Nonlinear Analysis: Theory, Methods and Applications 72 pp 65– (2010) · Zbl 1216.54011 · doi:10.1016/j.na.2009.06.040
[14] Wang, The robustness of generalized abstract fuzzy economies in generalized convex spaces, Fuzzy Sets and Systems 176 pp 56– (2011) · Zbl 1235.91123 · doi:10.1016/j.fss.2011.03.010
[15] Zadeh, Fuzzy sets, Information and Control 8 pp 338– (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[16] Kim, On Carateheodory-type selection theolem, Journal of Mathematical Analysis and Applications 135 pp 664– (1988) · Zbl 0676.28006 · doi:10.1016/0022-247X(88)90180-1
[17] Patriche, Bayesian abstract economy with a measure space of agents, Abstract and Applied Analysis 2009 pp 11– (2009) · Zbl 1176.91079 · doi:10.1155/2009/523619
[18] Patriche, Equilibrium of Bayesian fuzzy economies and quasi-variational inequalities with random fuzzy mappings, Journal of Inequalities and Applications 2013 pp 374, Article ID– (2013) · Zbl 1285.91081 · doi:10.1186/1029-242X-2013-374
[19] Patriche, Existence of equilibrium for an abstract economy with private information and a countable space of actions, Mathematical Reports 15 (65)(3) pp 233– (2013) · Zbl 1389.91062
[20] Patriche, Fuzzy games with a countable space of actions and applications to systems of generalized quasi-variational inequalities, Fixed Point Theory and Applications 2014 pp 124– (2014) · Zbl 1345.54066 · doi:10.1186/1687-1812-2014-124
[21] Patriche, Equilibrium in games and competitive economies (2011)
[22] Chang, On variational inequalities for fuzzy mappings, Fuzzy Sets and Systems 32 pp 359– (1989) · Zbl 0677.47037 · doi:10.1016/0165-0114(89)90268-6
[23] Noor, Variational inequalities for fuzzy mappings III, Fuzzy Sets and Systems 110 pp 101– (2000) · Zbl 0940.49011 · doi:10.1016/S0165-0114(98)00131-6
[24] Park, Completely generalized strongly quasivariational inequalities for fuzzy mapping, Fuzzy Sets and Systems 110 pp 91– (2000) · Zbl 0940.49012 · doi:10.1016/S0165-0114(98)00106-7
[25] Ding, A new class of generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings, Journal of Computational and Applied Mathematics 138 pp 243– (2002) · Zbl 0996.65067 · doi:10.1016/S0377-0427(01)00379-X
[26] Noor, Iterative algorithms for random variational inequalities, Pan-American Mathematical Journal 3 pp 39– (1993) · Zbl 0845.49007
[27] Aubin, Set-valued Analysis (1990) · Zbl 0713.49021
[28] Debreu, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability pp 351– (1966)
[29] Yannelis, Functional Analysis and Economic Theory pp 291– (1998) · doi:10.1007/978-3-642-72222-6_17
[30] Yannelis, Studies in Economic Theory, in: Equilibrium Theory in Infinite Dimensional Spaces pp 2– (1991) · doi:10.1007/978-3-662-07071-0_1
[31] Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proceedings of the National Academy of Sciences, U.S.A. 38 pp 121– (1952) · Zbl 0047.35103 · doi:10.1073/pnas.38.2.121
[32] Castaing, Lecture Notes in Mathematics, in: Convex Analysis and Measurable Multifunctions (1977) · Zbl 0346.46038 · doi:10.1007/BFb0087685
[33] Diestel J Uhl J Vector measures Mathematical Surveys Am. Math. Soc., Providence 1977 101 105 · Zbl 0369.46039
[34] Chang, Coincidence theorems and variational inequalities for fuzzy mappings, Fuzzy Sets and Systems 61 pp 359– (1994) · Zbl 0830.47052 · doi:10.1016/0165-0114(94)90178-3
[35] Onjai-Uea, A generalized nonlinear random equations with random fuzzy mappings in uniformly smooth Banach spaces, Journal of Inequalities and Applications 2010 pp 15– (2010) · Zbl 1210.47102 · doi:10.1155/2010/728452
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.