The choice of sample size for mortality forecasting: a Bayesian learning approach. (English) Zbl 1348.91162

Summary: Forecasted mortality rates using mortality models proposed in the recent literature are sensitive to the sample size. In this paper we propose a method based on Bayesian learning to determine model-specific posterior distributions of the sample sizes. In particular, the sample size is included as an extra parameter in the parameter space of the mortality model, and its posterior distribution is obtained based on historical performance for different forecast horizons up to 20 years. Age- and gender-specific posterior distributions of sample sizes are computed. Our method is applicable to a large class of linear mortality models. As illustration, we focus on the first generation of the Lee-Carter model and the Cairns-Blake-Dowd model. Our method is applied to US and Dutch data. For both countries we find highly concentrated posterior distributions of the sample size that are gender- and age-specific. In the out-of-sample forecast analysis, the Bayesian model outperforms the original mortality models with fixed sample sizes in the majority of cases.


91B30 Risk theory, insurance (MSC2010)
62F15 Bayesian inference
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI


[1] Adcock, C., Sample size determination: a review, J. R. Stat. Soc.: Ser. D (The Statist.), 46, 2, 261-283, (1997)
[2] Baran, S.; Gáll, J.; Ispány, M.; Pap, G., Forecasting Hungarian mortality rates using the Lee-Carter method, Acta Oecon., 57, 1, 21-34, (2007)
[3] Bauer, D.; Börger, M.; Ruß, J., On the pricing of longevity-linked securities, Insurance Math. Econom., 46, 1, 139-149, (2010) · Zbl 1231.91142
[4] Booth, H.; Maindonald, J.; Smith, L., Applying Lee-Carter under conditions of variable mortality decline, Popul. Stud., 56, 3, 325-336, (2002)
[5] Börger, M., The volatility of mortality, (Deutscher SCOR-Preis für Aktuarwissenschaften 2008: Zusammenfassung eingereichter Arbeiten, Vol. 8, (2009)), 25
[6] Börger, M., Deterministic shock vs. stochastic value-at-risk: an analysis of the solvency II standard model approach to longevity risk, Bl. DGVFM, 31, 2, 225-259, (2010) · Zbl 1232.91341
[7] Börger, M.; Fleischer, D.; Kuksin, N., Modeling the mortality trend under modern solvency regimes, ASTIN Bull., 1-38, (2014), 11, FirstView
[8] Brouhns, N.; Denuit, M.; Vermunt, J., A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance Math. Econom., 31, 3, 373-393, (2002) · Zbl 1074.62524
[9] Cairns, A.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration, J. Risk Insurance, 73, 4, 687-718, (2006)
[10] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Khalaf-Allah, M., Mortality density forecasts: an analysis of six stochastic mortality models, Insurance Math. Econom., 48, 3, 355-367, (2011)
[11] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from england and wales and the united states, N. Am. Actuar. J., 13, 1, 1-35, (2009)
[12] Cairns, A. J.B.; Blake, D.; Dowd, K.; Coughlan, G. D.; Khalaf-Allah, M., Bayesian stochastic mortality modelling for two populations, ASTIN Bulletin-Actuar. Stud. Non LifeInsurance, 41, 1, 29, (2011)
[13] Czado, C.; Delwarde, A.; Denuit, M., Bayesian Poisson log-bilinear mortality projections, Insurance Math. Econom., 36, 3, 260-284, (2005) · Zbl 1110.62142
[14] Damien, P.; Dellaportas, P.; Polson, N. G.; Stephens, D. A., Bayesian theory and applications, (2013), Oxford University Press
[15] Denuit, M.; Goderniaux, A., Closing and projecting life tables using log-linear models, Bull. Swiss Assoc. Actuar., 1, 4, 29-49, (2005) · Zbl 1333.62251
[16] De Santis, F., Statistical evidence and sample size determination for Bayesian hypothesis testing, J. Statist. Plann. Inference, 124, 1, 121-144, (2004) · Zbl 1094.62032
[17] Gelman, A.; Rubin, D. B., Inference from iterative simulation using multiple sequences, Statist. Sci., 457-472, (1992) · Zbl 1386.65060
[18] Hoeting, J. A.; Madigan, D.; Raftery, A. E.; Volinsky, C. T., Bayesian model averaging: a tutorial, Statist. Sci., 382-401, (1999) · Zbl 1059.62525
[19] Kass, R. E.; Raftery, A. E., Bayes factors, J. Amer. Statist. Assoc., 90, 430, 773-795, (1995) · Zbl 0846.62028
[20] Kogure, A.; Kitsukawa, K.; Kurachi, Y., A Bayesian comparison of models for changing mortalities toward evaluating longevity risk in Japan, Asia-Pac. J. Risk Insur., 3, 2, (2009)
[21] Kogure, A.; Kurachi, Y., A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions, Insurance Math. Econom., 46, 1, 162-172, (2010) · Zbl 1231.91438
[22] Lee, R.; Carter, L., Modeling and forecasting US mortality, J. Amer. Statist. Assoc., 659-671, (1992) · Zbl 1351.62186
[23] Lee, R.; Miller, T., Evaluating the performance of the Lee-Carter method for forecasting mortality, Demography, 38, 4, 537-549, (2001)
[24] Li, N.; Lee, R., Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method, Demography, 42, 3, 575-594, (2005)
[25] Miltersen, K.R., Persson, S.-A., 2005. Is mortality dead? Stochastic forward force of mortality rate determined by no arbitrage. Technical report, Working Paper, University of Bergen.
[26] O’Hare, C., Li, Y., 2012. Identifying structural breaks in stochastic mortality models. Available at SSRN 2192208.
[27] Pedroza, C., Bayesian hierarchical time series modeling of mortality rates, (2002), Havard University, (Ph.D. thesis)
[28] Pedroza, C., A Bayesian forecasting model: predicting US male mortality, Biostatistics, 7, 4, 530-550, (2006) · Zbl 1170.62397
[29] Pitacco, E.; Denuit, M.; Haberman, S.; Olivieri, A., Modelling longevity dynamics for pensions and annuity business, (2009), Oxford University Press USA · Zbl 1163.91005
[30] Plat, R., One-year value-at-risk for longevity and mortality, Insurance Math. Econom., 49, 3, 462-470, (2011)
[31] Reichmuth, W.H., Sarferaz, S., 2008. Bayesian demographic modeling and forecasting: an application to US mortality. Technical report, SFB 649 discussion paper.
[32] Renshaw, A. E.; Haberman, S., A cohort-based extension to the Lee-Carter model for mortality reduction factors, Insurance Math. Econom., 38, 3, 556-570, (2006) · Zbl 1168.91418
[33] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; Van Der Linde, A., Bayesian measures of model complexity and fit, J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 4, 583-639, (2002) · Zbl 1067.62010
[34] van Berkum, F., Antonio, K., Vellekoop, M., 2013. Structural changes in mortality rates with an application to Dutch and Belgian data.
[35] Wang, F.; Gelfand, A. E., A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models, Statist. Sci., 17, 2, 193-208, (2002) · Zbl 1013.62025
[36] Weiss, R., Bayesian sample size calculations for hypothesis testing, J. R. Stat. Soc.: Ser. D (The Statist.), 46, 2, 185-191, (1997)
[37] West, M.; Harrison, J., Bayesian forecasting and dynamic models, (1997), Springer · Zbl 0871.62026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.