×

Mortality modelling with regime-switching for the valuation of a guaranteed annuity option. (English) Zbl 1348.91145

Summary: We consider three ways of putting forward a regime-switching approach in modelling the evolution of mortality rates for the purpose of pricing a guaranteed annuity option (GAO). This involves the extension of the Gompertz and non-mean reverting models as well as the adoption of a pure Markov model for the force of mortality. A continuous-time finite-state Markov chain is employed to describe the evolution of mortality model parameters which are then estimated using the filtered-based and least-squares methods. The adequacy of the regime-switching Gompertz model for the US mortality data is demonstrated via the goodness-of-fit metrics and likelihood-based selection criteria. A GAO is valued assuming the interest and mortality risk factors are switching regimes in accordance with the dynamics of two independent Markov chains. To obtain closed-form valuation formulae, we employ the change of measure technique with the pure endowment price as the numéraire. Numerical implementations are included to compare the results of the proposed approaches and those from the Monte Carlo simulations.

MSC:

91B30 Risk theory, insurance (MSC2010)
91G20 Derivative securities (option pricing, hedging, etc.)
62P05 Applications of statistics to actuarial sciences and financial mathematics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ang, A.; Bekaert, G., Regime switches in interest rates, J. Bus. Econom. Statist., 20, 163-182, (2002)
[2] Ballotta, L.; Haberman, S., Valuation of guaranteed annuity conversion options, Insurance Math. Econom., 33, 87-108, (2003) · Zbl 1071.91019
[3] Ballotta, L.; Haberman, S., The fair valuation problem of guaranteed annuity options: the stochastic mortality environment case, Insurance Math. Econom., 38, 195-214, (2006) · Zbl 1101.60045
[4] Bebbington, M.; Green, R.; Lai, C.; Zitikis, R., Beyond the Gompertz law: exploring the late-life mortality deceleration phenomenon, Scand. Actuar. J., 2014, 3, 189-207, (2014) · Zbl 1401.91098
[5] Bell, F.; Miller, M., Life tables for the united states social security area 1900-2100, (2005), Social Security Administration Baltimore
[6] Biffis, E., Affine processes for dynamic mortality and actuarial valuations, Insurance Math. Econom., 37, 443-468, (2005) · Zbl 1129.91024
[7] Bolton, M.; Carr, D.; Collis, P.; George, C.; Knowles, V.; Whitehouse, A., Reserving for annuity guarantees, Br. Actuar. J., 10, 101-152, (2004)
[8] Bongaarts, J., Long-range trends in adult mortality: models and projection methods, Demography, 42, 23-49, (2005)
[9] Boyle, P.; Hardy, M., Reserving for maturity guarantees: two approaches, Insurance Math. Econom., 21, 113-127, (1997) · Zbl 0894.90044
[10] Brigo, D.; Mercurio, F., Interest rate models—theory and practice: with smile, inflation and credit, (2006), Springer Finance Berlin · Zbl 1109.91023
[11] Cairns, A.; Blake, D.; Dowd, K.; Coughlan, G.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from england and wales and the united states, N. Am. Actuar. J., 13, 1, 1-35, (2009)
[12] Chu, C.; Kwok, Y., Valuation of guaranteed annuity options in affine term and structure models, Int. J. Theor. Appl. Finance, 10, 363-387, (2007) · Zbl 1137.91490
[13] Dahl, M., Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts, Insurance Math. Econom., 35, 113-136, (2004) · Zbl 1075.62095
[14] Elliott, R.; Mamon, R., An interest rate model with a markovian mean-reverting level, Quant. Finance, 2, 454-458, (2002) · Zbl 1405.91661
[15] Elliott, R.; Mamon, R., A complete yield curve description of a Markov interest rate model, Int. J. Theor. Appl. Finance, 6, 317-326, (2003) · Zbl 1079.91027
[16] Elliott, R.; Siu, T., On Markov-modulated exponential-affine bond price formulae, Appl. Math. Finance, 16, 1-15, (2009) · Zbl 1169.91342
[17] Elliott, R.; Siu, T.; Chan, L., Pricing volatility swaps under heston’s stochastic volatility model with regime switching, Appl. Math. Finance, 14, 41-62, (2007) · Zbl 1281.91161
[18] Finch, C.; Pike, M., Maximum life span predictions from the Gompertz mortality model, J. Gerontol.: Biol. Sci., 51, 183-194, (1996)
[19] Garcia, R.; Perron, P., An analysis of the real interest rate under regime shifts, Rev. Econ. Stat., 78, 111-125, (1996)
[20] Geman, H.; El Karoui, N.; Rochet, J., Changes of numeŕaire, changes of probability measures and option pricing, J. Appl. Probab., 32, 443-458, (1995) · Zbl 0829.90007
[21] Goldfeld, S.; Quandt, R., A Markov model for switching regressions, J. Econometrics, 1, 3-16, (1973) · Zbl 0294.62087
[22] Gompertz, B., On the nature of the function expressive of the law of human mortality and on a new model of determining the value of life contingencies, Philos. Trans. R. Soc. Lond., 115, 513-583, (1825)
[23] Hamilton, J., Rational-expectations econometric analysis of changes in regime: an investigation of the term structures of interest rates, J. Econom. Dynam. Control, 12, 385-423, (1988) · Zbl 0661.62117
[24] Hamilton, J., A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57, 357-384, (1989) · Zbl 0685.62092
[25] Hardy, M., A regime-switching model of long-term stock returns, N. Am. Actuar. J., 5, 2, 41-53, (2001) · Zbl 1083.62530
[26] Hardy, M., Investment guarantees, (2003), Wiley & Sons New Jersey
[27] History of options under life policies, (1972), Insurance Institute of London London
[28] James, J.; Webber, N., Interest rate modelling, (2000), Wiley Chichester
[29] Lewis, K., Was there a peso problem in the US term structure of interest rates: 1979-1982?, Internat. Econom. Rev., 32, 159-173, (1991)
[30] Liu, X.; Mamon, R.; Gao, H., A comonotonicity-based valuation method for guaranteed annuity options, J. Comput. Appl. Math., 250, 58-69, (2013) · Zbl 1285.91130
[31] Liu, X.; Mamon, R.; Gao, H., A generalised pricing framework addressing correlated mortality and interest risks: a change of probability measure approach, Stochastics, 86, 4, 594-608, (2014) · Zbl 1337.91047
[32] Luciano, E.; Vigna, E., Non mean reverting affine processes for stochastic mortality, Belg. Actuar. Bull., 8, 5-16, (2008)
[33] Mamon, R., A time-varying Markov chain model of term structure, Statist. Probab. Lett., 60, 309-312, (2002) · Zbl 1037.60070
[34] Mamon, R.; Erlwein, C.; Gopaluni, B., Adaptive signal processing of asset price dynamics with predictability analysis, Inform. Sci., 178, 203-219, (2008) · Zbl 1130.91331
[35] Meyers, R., Encyclopedia of complexity and systems science, (2009), Springer New York · Zbl 1171.93001
[36] Milevsky, M.; Promislow, S., Mortality derivatives and the option to annuitise, Insurance Math. Econom., 29, 299-318, (2001) · Zbl 1074.62530
[37] Milidonis, A.; Lin, Y.; Cox, S., Mortality regimes and pricing, N. Am. Actuar. J., 15, 266-289, (2011) · Zbl 1228.91043
[38] Pitacco, E., Survival models in a dynamic context: a survey, Insurance Math. Econom., 35, 279-298, (2004) · Zbl 1079.91050
[39] Ross, S., Introduction to probability models, (2010), Academic Press Massachusetts · Zbl 1184.60002
[40] Shklovskii, B., A simple derivation of the Gompertz law for human mortality, Theory Biosci., 123, 431-433, (2005)
[41] Spiegelman, M., Introduction to demography, (1968), Harvard University Press Massachusetts
[42] Tenenbein, A.; Vanderhoof, I., New mathematical laws of select and ultimate mortality, Trans. Soc. Actuar., 32, 119-183, (1981)
[43] Trachtenberg, H., The wider application of the Gompertz law of mortality, J. Roy. Statist. Soc., 87, 2, 278-290, (1924)
[44] Tuljapurkar, S.; Boe, C., Mortality changes and forecasting: how much and how little do we know?, N. Am. Actuar. J., 2, 13-47, (1998) · Zbl 1081.91603
[45] Wetterstrand, W., Recent mortality experience described by gompertz’s and makeham’s laws—including a generalization, Actuar. Res. Clear. House, 2, 251-271, (1978)
[46] Wetterstrand, W., Parametric models for life insurance mortality data: gompertz’s law over time, Trans. Soc. Actuar., 33, 159-179, (1981)
[47] Wilkie, A.; Waters, H.; Yang, S., Reserving, pricing and hedging for policies with guaranteed annuity options, Br. Actuar. J., 9, 263-425, (2003)
[48] Xi, X.; Mamon, R., Parameter estimation of an asset price model driven by a weak hidden Markov chain, Econ. Model., 28, 36-46, (2011)
[49] Xi, X.; Mamon, R., Yield curve modelling using a multivariate higher-order HMM, (Zeng, Y.; Wu, S., State-Space Models and Applications in Economics and Finance, Springer’s Series in Statistics and Econometrics for Finance, vol. 1, (2013)), 185-203
[50] Xi, X.; Rodrigo, M.; Mamon, R., Parameter estimation of a regime-switching model using an inverse Stieltjes moment approach, (Cohen, S.; Madan, D.; Siu, T.; Yang, H., Stochastic Processes, Finance and Control, Advances in Statistics, Probability and Actuarial Science, (2012), World Scientific), 549-569 · Zbl 06174825
[51] Yashin, A.; Iachine, I.; Begun, A., Mortality modelling: a review, Math. Popul. Stud., 8, 305-332, (2000) · Zbl 0984.92027
[52] Yuen, F.; Yang, H., Pricing Asian options and equity-indexed annuities with regime switching by the trinomial tree method, N. Am. Actuar. J., 4, 256-277, (2010) · Zbl 1219.91145
[53] Zhou, N.; Mamon, R., An accessible implementation of interest rate models with regime-switching, Expert Syst. Appl., 39, 5, 4679-4689, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.