×

zbMATH — the first resource for mathematics

The curse of simultaneity. (English) Zbl 1348.91014
Proceedings of the 3rd conference on innovations in theoretical computer science, ITCS’12, Cambridge, MA, USA, January 8–10, 2012. New York, NY: Association for Computing Machinery (ACM) (ISBN 978-1-4503-1115-1). 60-67 (2012).

MSC:
91A10 Noncooperative games
91A18 Games in extensive form
91A06 \(n\)-person games, \(n>2\)
91A20 Multistage and repeated games
91A80 Applications of game theory
91B32 Resource and cost allocation (including fair division, apportionment, etc.)
90B35 Deterministic scheduling theory in operations research
68Q25 Analysis of algorithms and problem complexity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. E.ective strong dimension in algorithmic information and computational complexity. SIAM Journal on Computing, 37(3):671 705, 2007. · Zbl 1144.68029
[2] P. Billingsley. Ergodic Theory and Information. John Wiley and Sons, 1965. · Zbl 0141.16702
[3] C.-L. Chang and Y.-D. Lyuu. E.cient testing of forecasts. International Journal of Foundations of Computer Science, 21(1):61 72, 2010.
[4] A. Dawid. The well-calibrated Bayesian. Journal of the American Statistical Association, 77(379):605 610, 1982. · Zbl 0495.62005
[5] H. Eggleston. The fractional dimension of a set de.ned by decimal properties. Quarterly Journal of Mathematics, 20:31 36, 1949. · Zbl 0031.20801
[6] L. Fortnow and R. V. Vohra. The complexity of forecast testing. Econometrica, 77:93 105, 2009. · Zbl 1160.91396
[7] D. P. Foster and R. V. Vohra. Asymptotic calibration. Biometrika, 85(2):379 390, 1998. · Zbl 0947.62059
[8] L. A. Hemaspaandra. Sigact news complexity theory column 48. SIGACT News, 36(3):24 38, 2005. Guest Column: The Fractal Geometry of Complexity Classes, by J. M. Hitchcock, J. H. Lutz, and E. Mayordomo.
[9] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236 1259, 2003. · Zbl 1026.68059
[10] J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation, 187(1):49 79, 2003. · Zbl 1090.68053
[11] N. Merhav and M. Feder. Universal prediction. IEEE Transactions on Information Theory, 44(6):2124 2147, 1998. · Zbl 0933.94008
[12] A. Sandroni. The reproducible properties of correct forecasts. International Journal of Game Theory, 32(1):151 159, December 2003. · Zbl 1071.62084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.