×

zbMATH — the first resource for mathematics

Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. (English) Zbl 1348.82080
Summary: In this paper, we review some numerical methods presented in the literature in the last years to approximate the Cahn-Hilliard equation. Our aim is to compare the main properties of each one of the approaches to try to determine which one we should choose depending on which are the crucial aspects when we approximate the equations. Among the properties that we consider desirable to control are the time accuracy order, energy-stability, unique solvability and the linearity or nonlinearity of the resulting systems. In particular, we concern about the iterative methods used to approximate the nonlinear schemes and the constraints that may arise on the physical and computational parameters. Furthermore, we present the connections of the Cahn-Hilliard equation with other physically motivated systems (not only phase field models) and we state how the ideas of efficient numerical schemes in one topic could be extended to other frameworks in a natural way.

MSC:
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abels H. Diffuse interface models for two-phase flows of viscous incompressible fluids, habilitation thesis. http://www.mathematik.uni-r.de/abels/PrivateHomepage.html · Zbl 1254.76158
[2] Abels, H, Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow, SIAM J Math Anal, 44, 316-340, (2012) · Zbl 1333.76079
[3] Abels, H; Depner, D; Garcke, H, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J Math Fluid Mech, 15, 453-480, (2013) · Zbl 1273.76421
[4] Abels H, Garcke H, Grun G (2012) Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math Models Methods Appl Sci 22(03):1150013 · Zbl 1242.76342
[5] Allen, S; Cahn, JW, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall, 27, 1084-1095, (1979)
[6] Badia, S; Guillén-González, F; Gutiérrez-Santacreu, JV, Finite element approximation of nematic liquid crystal flows using a saddle-point structure, J Comput Phys, 230, 1686-1706, (2011) · Zbl 1211.82056
[7] Banas, L; Nürnberg, R, Adaptive finite element methods for Cahn-Hilliard equations, J Comput Appl Math, 218, 2-11, (2008) · Zbl 1143.65076
[8] Barrett, JW; Blowey, JF; Garcke, H, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J Numer Anal, 37, 286-318, (1999) · Zbl 0947.65109
[9] Bates, PW; Fife, PC, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J Appl Math, 53, 990-1008, (1993) · Zbl 0788.35061
[10] Becker, R; Feng, X; Prohl, A, Finite element approximations of the ericksen-Leslie model for nematic liquid crystal flow, SIAM J Numer Anal, 46, 1704-1731, (2008) · Zbl 1187.82130
[11] Boyer, F, A theoretical and numerical model for the study of incompressible mixture flows, Comput Fluids, 31, 41-68, (2002) · Zbl 1057.76060
[12] Boyer, F; Minjeaud, S, Numerical schemes for a three component Cahn-Hilliard model, ESAIM: Math Model Numer Anal, 45, 697-738, (2011) · Zbl 1267.76127
[13] Cahn, JW; Hilliard, JE, Free energy of a non-uniform system. I. interfacial free energy, J Chem Phys, 28, 258-267, (1958)
[14] Ceniceros HD (2009) Tracking fluid interfaces approaching singular events. Bol Soc Esp Mat Apl 48:31-57 · Zbl 1242.76017
[15] Copetti, MIM; Elliott, CM, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer Math, 63, 39-65, (1992) · Zbl 0762.65074
[16] Du, Q; Li, M; Liu, C, Analysis of a phase field Navier-Stokes vesicle-fluid interaction model, Discret Contin Dyn Syst, 8, 539-556, (2007) · Zbl 1172.74016
[17] Du, Q; Liu, C; Ryham, R; Wang, X, Energetic variational approaches in modeling vesicle and fluid interactions, Phys D, 238, 923-930, (2009) · Zbl 1183.74056
[18] Du, Q; Liu, C; Wang, X, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J Comput Phys, 198, 450-468, (2004) · Zbl 1116.74384
[19] Du, Q; Liu, C; Wang, X, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J Comput Phys, 212, 757-777, (2006) · Zbl 1086.74024
[20] Du, Q; Nicolaides, RA, Numerical analysis of a continuum model of phase transition, SIAM J Numer Anal, 28, 1310-1322, (1991) · Zbl 0744.65089
[21] Du, Q; Wang, X, Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations, Int J Numer Anal Model, 4, 441-459, (2007) · Zbl 1130.74046
[22] Du, Q; Zhang, J, Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations, SIAM J Sci Comput, 30, 1634-1657, (2008) · Zbl 1162.74042
[23] Du, Q; Zhu, L, Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation, J Comput Math, 24, 265-280, (2006) · Zbl 1095.74033
[24] Elliott, CM; French, DA, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J Numer Anal, 26, 884-903, (1989) · Zbl 0686.65086
[25] Elliott, CM; French, DA, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J Appl Math, 38, 97-128, (1987) · Zbl 0632.65113
[26] Elliott, CM; French, DA; Milner, FA, A second order splitting method for the Cahn-Hilliard equation, Numer Math, 54, 575-590, (1989) · Zbl 0668.65097
[27] Elliott, CM; Garcke, H, On the Cahn-Hilliard equation with degenerate mobility, SIAM J Math Anal, 27, 404-423, (1996) · Zbl 0856.35071
[28] Elliott, CM; Songmu, Z, On the Cahn-Hilliard equation, Arch Ration Mech Anal, 96, 339-357, (1986) · Zbl 0624.35048
[29] Eyre JD, An unconditionally stable one-step scheme for gradient system, unpublished, www.math.utah.edu/ eyre/research/methods/stable.ps · Zbl 1085.65093
[30] Feng, X, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J Numer Anal, 44, 1049-1072, (2006) · Zbl 1344.76052
[31] Feng, X; Prohl, A, Error analysis of a mixed finite element method for the Cahn-Hilliard equation, Numer Math, 99, 47-84, (2004) · Zbl 1071.65128
[32] Furihata, D, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer Math, 87, 675-699, (2001) · Zbl 0974.65086
[33] Girault V, Raviart PA (1986) Finite element methods for Navier-Stokes equations: theory and algorithms. Springer, Berlin · Zbl 0585.65077
[34] Gomez, H; Calo, VM; Bazilevs, Y; Hughes, TJR, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput Methods Appl Mech Eng, 197, 4333-4352, (2008) · Zbl 1194.74524
[35] Gomez, H; Hughes, TJR, Provably unconditionally stable, second-order time-accurate, J Comput Phys, 230, 5310-5327, (2011) · Zbl 1419.76439
[36] Guillén-González, F; Gutiérrez-Santacreu, JV, A linear mixed finite element scheme for a nematic ericksen-Leslie liquid crystal model, ESAIM: Math Model Numer Anal, 47, 1433-1464, (2013) · Zbl 1290.82031
[37] Guillén-González, F; Tierra, G, On linear schemes for a Cahn-Hilliard diffuse interface model, J Comput Phys, 234, 140-171, (2013) · Zbl 1284.35025
[38] Guillén-González F, Tierra G, Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models. Submitted · Zbl 0744.65089
[39] Guillén-González F, Tierra G, Splitting schemes for a Navier-Stokes-Cahn-Hilliard model for two fluids with different densities. Submitted · Zbl 0624.35048
[40] Gurtin, D; Polignone, D; Viñals, J, Two-phase binary fluids and immiscible fluids described by an order parameter, Math Models Methods Appl Sci, 6, 815-831, (1996) · Zbl 0857.76008
[41] Hohenberg, PP; Halperin, BI, Theory of dynamic critical phenomena, Rev Mod Phys, 49, 435-479, (1977)
[42] Hu, Z; Wise, SM; Wang, C; Lowengrub, JS, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J Comput Phys, 228, 5323-5339, (2009) · Zbl 1171.82015
[43] Hua, J; Lin, P; Liu, C; Wang, Q, Energy law preserving \(C0\) finite element schemes for phase field models in two-phase flow computations, J Comput Phys, 230, 7115-7131, (2011) · Zbl 1408.76550
[44] Hyon, Y; Kwak, DY; Liu, C, Energetic variational approach in complex fluids: maximum dissipation principle, Discret Contin Dyn Syst, 26, 1291-1304, (2010) · Zbl 1423.76380
[45] Kay D, Styles V, Suli E (2009) Discontinuous Galerkin finite element approximation of the Cahn-Hilliard Equation with convection. SIAM J Numer Anal 47:2660-2685 · Zbl 1197.65136
[46] Kim, J, Phase field computations for ternary fluid flows, Comput Methods Appl Mech Eng, 196, 45-48, (2007)
[47] Kim, J, Phase-field models for multi-component fluid flows, Commun Comput Phys, 196, 613-661, (2012) · Zbl 1373.76030
[48] Kim, J; Kang, K; Lowengrub, J, Conservative multigrid methods for Cahn-Hilliard fluids, J Comput Phys, 193, 511-543, (2004) · Zbl 1109.76348
[49] Kim, J; Kang, K; Lowengrub, J, Conservative multigrid methods for ternary Cahn-Hilliard systems, Commun Math Sci, 2, 53-77, (2004) · Zbl 1085.65093
[50] Kim, J; Lowengrub, J, Phase field modeling and simulation of three-phase flows, Interfaces Free Boundaries, 7, 435-466, (2005) · Zbl 1100.35088
[51] Lin, FH, Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Commun Pure Appl Math, 42, 789-814, (1989) · Zbl 0703.35173
[52] Lin, FH; Liu, C, Non-parabolic dissipative systems modelling the flow of liquid crystals, Commun Pure Appl Math, 4, 501-537, (1995) · Zbl 0842.35084
[53] Lin, FH; Liu, C, Existence of solutions for the ericksen-Leslie system, Arch Ration Mech Anal, 154, 135-156, (2000) · Zbl 0963.35158
[54] Lin, P; Liu, C, Simulations of singularity dynamics in liquid crystal flows: a \(C^0\) finite element approach, J Comput Phys, 215, 1411-1427, (2006) · Zbl 1101.82039
[55] Lin, P; Liu, C; Zhang, H, An energy law preserving \(C^0\) finite element scheme for simulating the kinematic effects in liquid crystal dynamics, J Comput Phys, 227, 1411-1427, (2007) · Zbl 1133.65077
[56] Lowengrub, J; Truskinovsky, L, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R Soc Lond Proc Ser A Math Phys Eng Sci, 454, 2617-2654, (1998) · Zbl 0927.76007
[57] Mello EVL, Filho OTS (2005) Numerical study of the Cahn-Hilliard equation in one, two and three dimensions. Phys A 347:429-443 · Zbl 1416.65364
[58] Minjeaud S (2013) An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model. Numer Methods Partial Differ Eq 29:584-618 · Zbl 1364.76091
[59] Novick-Cohen, A; Segel, LA, Nonlinear aspects of the Cahn-Hilliard equation, Phys D, 10, 277-298 , (1984)
[60] Shen J, Wang C, Wang X, Wise S (2012) Second-order convex splitting schemes for gradient flows with Enhrich-Schwoebel type energy: application to thin film epitaxy. SIAM J Numer Anal 50:105-125 · Zbl 1247.65088
[61] Shen, J; Yang, X, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J Sci Comput, 32, 1159-1179, (2010) · Zbl 1410.76464
[62] Shen, J; Yang, X, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discret Contin Dyn Syst, 28, 1669-1691, (2010) · Zbl 1201.65184
[63] van der Waals JD (1893) The thermodynamic theory of capillarity flow under the hypothesis of a continuous variation of density. Verhandel. Konink. Akad. Weten. Amsterdam, 1 · Zbl 0947.65109
[64] Wise, SM, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J Sci Comput, 44, 1, (2010) · Zbl 1203.76153
[65] Wodo, O; Ganapathysubramanian, B, Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem, J Comput Phys, 230, 6037-6060, (2011) · Zbl 1416.65364
[66] Wu X, van Zwieten GJ, van der Zee KG (2013) Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. Int J Numer Methods Biomed Eng, 30:180-203 · Zbl 1273.76421
[67] Yue, P; Feng, JJ; Liu, C; Shen, J, A diffuse-interface method for simulating two-phase flows of complex fluids, J Fluid Mech, 515, 293-317, (2004) · Zbl 1130.76437
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.