×

zbMATH — the first resource for mathematics

Gauged double field theory. (English) Zbl 1348.81368
Summary: We find necessary and sufficient conditions for gauge invariance of the action of Double Field Theory (DFT) as well as closure of the algebra of gauge symmetries. The so-called weak and strong constraints are sufficient to satisfy them, but not necessary. We then analyze compactifications of DFT on twisted double tori satisfying the consistency conditions. The effective theory is a Gauged DFT where the gaugings come from the duality twists. The action, bracket, global symmetries, gauge symmetries and their closure are computed by twisting their analogs in the higher dimensional DFT. The non-Abelian heterotic string and lower dimensional gauged supergravities are particular examples of Gauged DFT.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Hull, C.; Zwiebach, B., Double field theory, JHEP, 09, 099, (2009)
[2] Hull, C.; Zwiebach, B., The gauge algebra of double field theory and Courant brackets, JHEP, 09, 090, (2009)
[3] Hohm, O.; Hull, C.; Zwiebach, B., Background independent action for double field theory, JHEP, 07, 016, (2010)
[4] Hohm, O.; Hull, C.; Zwiebach, B., Generalized metric formulation of double field theory, JHEP, 08, 008, (2010)
[5] Siegel, W., Superspace duality in low-energy superstrings, Phys. Rev., D 48, 2826, (1993)
[6] Siegel, W., Two vierbein formalism for string inspired axionic gravity, Phys. Rev. , D 47, 5453, (1993)
[7] Tseytlin, AA, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys., B 350, 395, (1991)
[8] Tseytlin, AA, Duality symmetric formulation of string world sheet dynamics, Phys. Lett., B 242, 163, (1990)
[9] Duff, M., Duality rotations in string theory, Nucl. Phys., B 335, 610, (1990)
[10] Duff, M.; Lu, J., Duality rotations in membrane theory, Nucl. Phys., B 347, 394, (1990)
[11] Hohm, O.; Kwak, SK, \(N\) = 1 supersymmetric double field theory, JHEP, 03, 080, (2012)
[12] I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D Rapid Communications 85,081501 (R) (2012) [arXiv:1112.0069] [INSPIRE].
[13] N.B. Copland, A double σ-model for double field theory, arXiv:1111.1828 [INSPIRE].
[14] Berman, DS; Musaev, ET; Perry, MJ, Boundary terms in generalized geometry and doubled field theory, Phys. Lett., B 706, 228, (2011)
[15] Jeon, I.; Lee, K.; Park, J-H, Incorporation of fermions into double field theory, JHEP, 11, 025, (2011)
[16] Kan, N.; Kobayashi, K.; Shiraishi, K., Equations of motion in double field theory: from particles to scale factors, Phys. Rev., D 84, 124049, (2011)
[17] Hohm, O.; Kwak, SK; Zwiebach, B., Double field theory of type II strings, JHEP, 09, 013, (2011)
[18] Hohm, O.; Kwak, SK; Zwiebach, B., Unification of type II strings and T-duality, Phys. Rev. Lett., 107, 171603, (2011)
[19] Copland, NB, Connecting T-duality invariant theories, Nucl. Phys., B 854, 575, (2012)
[20] Albertsson, C.; Dai, S-H; Kao, P-W; Lin, F-L, Double field theory for double D-branes, JHEP, 09, 025, (2011)
[21] Thompson, DC, Duality invariance: from M-theory to double field theory, JHEP, 08, 125, (2011)
[22] Andriot, D.; Larfors, M.; Lüst, D.; Patalong, P., A ten-dimensional action for non-geometric fluxes, JHEP, 09, 134, (2011)
[23] Jeon, I.; Lee, K.; Park, J-H, Stringy differential geometry, beyond Riemann, Phys. Rev., D 84, 044022, (2011)
[24] Jeon, I.; Lee, K.; Park, J-H, Double field formulation of Yang-Mills theory, Phys. Lett., B 701, 260, (2011)
[25] Hohm, O.; Kwak, SK, Frame-like geometry of double field theory, J. Phys., A 44, 085404, (2011)
[26] Jeon, I.; Lee, K.; Park, J-H, Differential geometry with a projection: application to double field theory, JHEP, 04, 014, (2011)
[27] Kwak, SK, Invariances and equations of motion in double field theory, JHEP, 10, 047, (2010)
[28] Hohm, O.; Kwak, SK, Massive type II in double field theory, JHEP, 11, 086, (2011)
[29] Hohm, O.; Kwak, SK, Double field theory formulation of heterotic strings, JHEP, 06, 096, (2011)
[30] Aldazabal, G.; Baron, W.; Marques, D.; Núñez, C., The effective action of double field theory, JHEP, 11, 052, (2011)
[31] Geissbuhler, D., double field theory and N = 4 gauged supergravity, JHEP, 11, 116, (2011)
[32] O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory, arXiv:1112.5296 [INSPIRE].
[33] Coimbra, A.; Strickland-Constable, C.; Waldram, D., Supergravity as generalised geometry I: type II theories, JHEP, 11, 091, (2011)
[34] A. Coimbra, C. Strickland-Constable and D. Waldram, \(E\)_{d(d)} × R\^{}{+}generalised geometry, connections and M-theory, arXiv:1112.3989 [INSPIRE].
[35] West, P., Generalised geometry, eleven dimensions and \(E\)_{11}, JHEP, 02, 018, (2012)
[36] A. Rocen and P. West, \(E\)_{11}, generalised space-time and IIA string theory: the RR sector, arXiv:1012.2744 [INSPIRE].
[37] West, P., \(E\)_{11}, generalised space-time and IIA string theory, Phys. Lett., B 696, 403, (2011)
[38] Berman, DS; Godazgar, H.; Perry, MJ; West, P., Duality invariant actions and generalised geometry, JHEP, 02, 108, (2012)
[39] Berman, DS; Godazgar, H.; Godazgar, M.; Perry, MJ, The local symmetries of M-theory and their formulation in generalised geometry, JHEP, 01, 012, (2012)
[40] Berman, DS; Perry, MJ, Generalized geometry and M-theory, JHEP, 06, 074, (2011)
[41] Hohm, O., T-duality versus gauge symmetry, Prog. Theor. Phys. Suppl., 188, 116, (2011)
[42] B. Zwiebach, Double field theory, T-duality and Courant brackets, arXiv:1109.1782 [INSPIRE].
[43] Scherk, J.; Schwarz, JH, How to get masses from extra dimensions, Nucl. Phys., B 153, 61, (1979)
[44] Shelton, J.; Taylor, W.; Wecht, B., Nongeometric flux compactifications, JHEP, 10, 085, (2005)
[45] Aldazabal, G.; Camara, PG; Font, A.; Ibáñez, L., More dual fluxes and moduli fixing, JHEP, 05, 070, (2006)
[46] Aldazabal, G.; Andres, E.; Camara, PG; Graña, M., U-dual fluxes and generalized geometry, JHEP, 11, 083, (2010)
[47] Hull, C., A geometry for non-geometric string backgrounds, JHEP, 10, 065, (2005)
[48] Dabholkar, A.; Hull, C., Generalised T-duality and non-geometric backgrounds, JHEP, 05, 009, (2006)
[49] Hull, C.; Reid-Edwards, R., Gauge symmetry, T-duality and doubled geometry, JHEP, 08, 043, (2008)
[50] Hull, C.; Reid-Edwards, R., Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP, 09, 014, (2009)
[51] G. Dall’Agata, N. Prezas, H. Samtleben and M. Trigiante, Gauged supergravities from twisted doubled tori and non-geometric string backgrounds, Nucl. Phys.B 799 (2008) 80 [arXiv:0712.1026] [INSPIRE].
[52] Samtleben, H., Lectures on gauged supergravity and flux compactifications, Class. Quant. Grav., 25, 214002, (2008)
[53] Andriot, D.; Goi, E.; Minasian, R.; Petrini, M., Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP, 05, 028, (2011)
[54] Andriot, D.; Minasian, R.; Petrini, M., Flux backgrounds from twists, JHEP, 12, 028, (2009)
[55] Schon, J.; Weidner, M., Gauged \(N\) = 4 supergravities, JHEP, 05, 034, (2006)
[56] Aldazabal, G.; Marques, D.; Núñez, C.; Rosabal, JA, On type IIB moduli stabilization and \(N\) =4,8 supergravities, Nucl. Phys., B 849, 80, (2011)
[57] Dibitetto, G.; Guarino, A.; Roest, D., How to halve maximal supergravity, JHEP, 06, 030, (2011)
[58] Graña, M.; Minasian, R.; Petrini, M.; Waldram, D., T-duality, generalized geometry and non-geometric backgrounds, JHEP, 04, 075, (2009)
[59] D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys.B 267 (1986) 75 [INSPIRE].
[60] D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 1. The free heterotic string, Nucl. Phys.B 256 (1985) 253 [INSPIRE].
[61] Andriot, D., Heterotic string from a higher dimensional perspective, Nucl. Phys., B 855, 222, (2012)
[62] Maharana, J.; Schwarz, JH, Noncompact symmetries in string theory, Nucl. Phys., B 390, 3, (1993)
[63] Kaloper, N.; Myers, RC, The odd story of massive supergravity, JHEP, 05, 010, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.