zbMATH — the first resource for mathematics

On using extreme values to detect global stability thresholds in multi-stable systems: the case of transitional plane Couette flow. (English) Zbl 1348.76083
Summary: Extreme Value Theory (EVT) is exploited to determine the global stability threshold \(R_{\text{g}}\) of plane Couette flow – the flow of a viscous fluid in the space between two parallel plates – whose laminar or turbulent behavior depends on the Reynolds number \(R\). Even if the existence of a global stability threshold has been detected in simulations and experiments, its numerical value has not been unequivocally defined. \(R_{\text{g}}\) is the value such that for \(R>R_{\text{g}}\), turbulence is sustained, whereas for \(R<R_{\text{g}}\) it is transient and eventually decays. We address the problem of determining \(R_{\text{g}}\) by using the extremes – maxima and minima – of the perturbation energy fluctuations. When \(R\gg R_{\text{g}}\), both the positive and negative extremes are bounded. As the critical Reynolds number is approached from above, the probability of observing a very low minimum increases causing asymmetries in the distributions of maxima and minima. On the other hand, the maxima distribution is unaffected as the fluctuations towards higher values of the perturbation energy remain bounded. This tipping point can be detected by fitting the data to the Generalized Extreme Value (GEV) distribution and by identifying \(R_{\text{g}}\) as the value of \(R\) such that the shape parameter of the GEV for the minima changes sign from negative to positive. The results are supported by the analysis of theoretical models which feature a bistable behavior.

76F10 Shear flows and turbulence
37M05 Simulation of dynamical systems
37C75 Stability theory for smooth dynamical systems
Full Text: DOI arXiv
[1] Scheffer, M.; Bascompte, J.; Brock, W. A.; Brovkin, V.; Carpenter, S. R.; Dakos, V., Early-warning signals for critical transitions, Nature, 461, 53-59, (2009)
[2] Kuehn, C., A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics, Physica D, 240, 1020-1035, (2011) · Zbl 1225.35242
[3] Manneville, P., Instabilities, chaos and turbulence, (2010), Imperial College Press · Zbl 1197.76001
[4] Prigent, A.; Dauchot, O., Transition to versus from turbulence in subcritical Couette flows, (Mullin, T.; Kerswell, R., Laminar turbulent transition and finite amplitude solutions, (2005), Springer), 195-219
[5] Avila, K.; Moxey, D.; de Lozar, A.; Avila, M.; Barkley, D.; Hof, B., The onset of turbulence in pipe flow, Science, 333, 192-194, (2011) · Zbl 1411.76035
[6] Manneville, P., On the growth of laminar-turbulent patterns in plane Couette flow, Fluid Dyn Res, 44, (2012) · Zbl 1309.76092
[7] de Haan, L.; Ferreira, A., Extreme value theory, (2006), Springer · Zbl 1101.62002
[8] Leadbetter, M. R.; Lindgren, G.; Rootzén, H., Extremes and related properties of random sequences and processes, Springer series in statistics, (1983), Springer-Verlag New York · Zbl 0518.60021
[9] Gnedenko, B., Sur la distribution limite du terme maximum d’une série aléatoire, Ann Math, 44, 423-453, (1943) · Zbl 0063.01643
[10] Coles, S., An introduction to statistical modeling of extreme values, (2001), Springer Verlag · Zbl 0980.62043
[11] Balakrishnan, V.; Nicolis, C.; Nicolis, G., Extreme value distributions in chaotic dynamics, J Stat Phys, 80, 307-336, (1995) · Zbl 1081.60528
[12] Freitas, A. C.M.; Freitas, J. M.; Todd, M., Hitting time statistics and extreme value theory, Probab Theory Related Fields, 147, 675-710, (2010) · Zbl 1203.37021
[13] Newell, G. F., Asymptotic extremes for m-dependent random variables, Ann Math Stat, 35, 1322-1325, (1964) · Zbl 0239.60033
[14] Loynes, R., Extreme values in uniformly mixing stationary stochastic processes, Ann Math Stat, 993-999, (1965) · Zbl 0178.53201
[15] O’Brien, G., Limit theorems for the maximum term of a stationary process, Ann Probab, 2, 540-545, (1974) · Zbl 0286.60018
[16] Freitas, A. C.M.; Freitas, J. M.; Todd, M., Extreme value laws in dynamical systems for non-smooth observations, J Stat Phys, 142, 108-126, (2011) · Zbl 1237.37012
[17] Lucarini, V.; Faranda, D.; Turchetti, G.; Vaienti, S., Extreme value theory for singular measures, Chaos, 22, 023135, (2012) · Zbl 1331.37032
[18] Faranda, D.; Vaienti, S., A recurrence-based technique for detecting genuine extremes in instrumental temperature records, Geophys Res Lett, 40, 5782-5786, (2013)
[19] Temam, R., Inertial manifolds, Math Intell, 12, 68-74, (1990) · Zbl 0711.58025
[20] Faranda, D.; Lucarini, V.; Turchetti, G.; Vaienti, S., Numerical convergence of the block-maxima approach to the generalized extreme value distribution, J Stat Phys, 145, 1156-1180, (2011) · Zbl 1375.60097
[21] Ott, E., Chaos in dynamical systems, (1993), Cambridge University Press · Zbl 0792.58014
[22] Stanley, E., Introduction to phase transitions and critical phenomena, (1988), Oxford University Press
[23] Holland, M. P.; Vitolo, R.; Rabassa, P.; Sterk, A. E.; Broer, H. W., Extreme value laws in dynamical systems under physical observables, Physica D, 241, 497-513, (2012) · Zbl 1306.37034
[24] Lucarini, V.; Kuna, T.; Faranda, D.; Wouters, J., Towards a general theory of extremes for observables of chaotic dynamical systems, J Stat Phys, 154, 723-750, (2014) · Zbl 1295.60068
[25] Hall, P., On the rate of convergence of normal extremes, J Appl Probab, 433-439, (1979) · Zbl 0403.60024
[26] Guttal, V.; Jayaprakash, C., Changing skewness: an early warning signal of regime shifts in ecosystems, Ecol Lett, 11, 450-460, (2008)
[27] Waleffe, F., On a self-sustaining process in shear flows, Phys Fluids, 9, 883-900, (1997)
[28] Duguet, Y.; Schlatter, P.; Henningson, D. S., Formation of turbulent patterns near the onset of transition in plane Couette flow, J Fluid Mech, 650, 119-129, (2010) · Zbl 1189.76254
[29] Tuckerman, L. S.; Barkley, D., Patterns and dynamics in transitional plane Couette flow, Phys Fluids, 23, (2011) · Zbl 1308.76135
[30] Manneville, P.; Rolland, J., On modelling transitional turbulent flows using under-resolved direct numerical simulations: the case of plane Couette flow, Theor Comput Fluid Dyn, 25, 407-420, (2011) · Zbl 1272.76140
[31] Rolland, J.; Manneville, P., Ginzburg-Landau description of laminar-turbulent oblique band formation in transitional plane Couette flow, Eur Phys J B, 80, 529-544, (2011)
[32] Philip, J.; Manneville, P., From temporal to spatiotemporal dynamics in transitional plane Couette flow, Phys Rev E, 83, (2011)
[33] Gibson J. Channelflow: a spectral Navier-Stokes simulator in C++. Georgia Institute of Technology; 2007.
[34] Dauchot, O.; Manneville, P., Local versus global concepts in hydrodynamic stability theory, J Phys II, 7, 371-389, (1997)
[35] Barkley, D., Modeling the transition to turbulence in shear flows, J Phys Conf Ser, 318, 032001, (2011)
[36] Manneville, P., Modeling the direct transition to turbulence, (IUTAM symposium on laminar-turbulent transition and finite amplitude solutions, (2005), Springer), 1-33
[37] Risken, H., Fokker-Planck equation, (1989), Springer · Zbl 0665.60084
[38] Hänggi, P.; Talkner, P.; Borkovec, M., Reaction-rate theory: fifty years after Kramers, Rev Mod Phys, 62, 251, (1990)
[39] Broecker, W. S., Thermohaline circulation, the achilles heel of our climate system: will man-made co2 upset the current balance?, Science, 278, 1582-1588, (1997)
[40] Lucarini, V.; Faranda, D.; Willeit, M., Bistable systems with stochastic noise: virtues and limits of effective one-dimensional Langevin equations, Nonlinear Process Geophys, 19, 9-22, (2012)
[41] Hoffman, P. F.; Schrag, D. P., The snowball Earth hypothesis: testing the limits of global change, Terra Nova, 14, 129-155, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.