Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: comparisons and benchmarks. (English) Zbl 1348.74292

Summary: The purpose of this work is comparing three strategies for dealing with inhomogeneities of non-elliptical shape in the context of homogenization methods. First, classical mean-field methods and two relatively new approaches, IDD and ESCS, are used in combination with analytical expressions for the Eshelby tensor based on its irreducible decomposition. The second strategy to be investigated is the Mori-Tanaka method in combination with the replacement tensor approach, which uses numerical models of dilute inhomogeneities embedded in large matrix regions. The third approach consists of the direct Finite Element discretization of microstructures. The elasticity tensors and directional Young’s moduli are first studied for arrangements of aligned inhomogeneities of three different shapes and of combinations of these shapes. Subsequently the three modeling strategies are applied to a real microstructure. Comparisons are not only carried out with respect to phase volume fractions, but also with respect to the contrast in the elastic phase properties. All calculations are restricted to plane strain conditions and to isotropic material behavior.


74Q15 Effective constitutive equations in solid mechanics
74A60 Micromechanical theories
74E30 Composite and mixture properties
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74N15 Analysis of microstructure in solids
Full Text: DOI


[1] Arns, C.; Knackstedt, M.; Pinczewski, W.; Garboczi, E., Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment, Geophysics, 67, 5, 1396-1405, (2002)
[2] Bartel, T., 2009. Multiskalenmodellierung martensitischer Phasentransformationen in Formgedächtnislegierungen unter Verwendung relaxierter Energiepotenziale, Ph.D. Thesis, Mitteilungen aus dem Institut für Mechanik Nr. 150, Ruhr-Universität Bochum, Germany.
[3] Benveniste, Y., A new approach to the application of Mori-tanaka’s theory in composite materials, Mechanics of materials, 6, 2, 147-157, (1987)
[4] Benveniste, Y.; Dvorak, G.; Chen, T., On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media, Journal of the mechanics and physics of solids, 39, 7, 927-946, (1991) · Zbl 0754.73018
[5] Böhlke, T.; Fritzen, F.; Jöchen, K.; Tsotsova, R., Numerical methods for the quantification of the mechanical properties of crystal aggregates with morphologic and crystallographic texture, International journal of material forming, 2, 0, 915-917, (2009)
[6] Böhlke, T.; Jöchen, K.; Kraft, O.; Löhe, D.; Schulze, V., Elastic properties of polycrystalline microcomponents, Mechanics of materials, 42, 1, 11-23, (2010)
[7] Böhm, H.J., 2011. A Short Introduction to Basic Aspects of Continuum Micromechanics, www.ilsb.tuwien.ac.at/links/downloads/cdlfmdrep03.pdf, ILSB Report 206, Vienna University of Technology.
[8] Boulanger, P.; Hayes, M., On young’s modulus for anisotropic media, Journal of applied mechanics, 62, 3, 819-820, (1995) · Zbl 0836.73007
[9] Cazzani, A.; Rovati, M., Extrema of young’s modulus for cubic and transversely isotropic solids, International journal of solids and structures, 40, 7, 1713-1744, (2003) · Zbl 1062.74519
[10] Cazzani, A.; Rovati, M., Extrema of young’s modulus for elastic solids with tetragonal symmetry, International journal of solids and structures, 42, 18-19, 5057-5096, (2005) · Zbl 1119.74310
[11] Christensen, R.M., A critical evaluation for a class of micro-mechanics models, Journal of the mechanics and physics of solids, 38, 3, 379-404, (1990)
[12] Christensen, R.M.; Lo, K.H., Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the mechanics and physics of solids, 27, 4, 315-330, (1979) · Zbl 0419.73007
[13] Drugan, W.J.; Willis, J.R., A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the mechanics and physics of solids, 44, 4, 497-524, (1996) · Zbl 1054.74704
[14] Du, D.; Zheng, Q., A further exploration of the interaction direct derivative (IDD) estimate for the effective properties of multiphase composites taking into account inclusion distribution, Acta mechanica, 157, 61-80, (2002) · Zbl 1205.74147
[15] Duschlbauer, D., 2004. Computational Simulation of the Thermal Conductivity of MMCs Under Consideration of the Inclusion-matrix Interface, PhD Thesis, ILSB, Vienna University of Technology, Austria, VDI-Verlag, Reihe 5, Nr. 561.
[16] Eroshkin, O.; Tsukrov, I., On micromechanical modeling of particulate composites with inclusions of various shapes, International journal of solids and structures, 42, 409-427, (2005) · Zbl 1102.74013
[17] Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the royal society of London, 241, 1226, 376-396, (1957) · Zbl 0079.39606
[18] Ewing, R.; Iliev, O.; Lazarov, R.; Rybak, I.; Willems, J., A simplified method for upscaling composite materials with high contrast of the conductivity, SIAM journal on scientific computing, 31, 4, 2568-2586, (2009) · Zbl 1202.80025
[19] Ferrari, M., Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory, Mechanics of materials, 11, 3, 251-256, (1991)
[20] Gavazzi, A.C.; Lagoudas, D.C., On the numerical evaluation of eshelby’s tensor and its application to elastoplastic fibrous composites, Computational mechanics, 7, 1, 13-19, (1990)
[21] Goens, E., Über eine verbesserte apparatur zur statischen bestimmung des drillungsmoduls von kristallstäben und ihre anwendung auf Zink-einkristalle, Annalen der physik, ISSN: 1521-3889, 408, 7, 793-809, (1933)
[22] Gross, D.; Seelig, T., Fracture mechanics: with an introduction to micromechanics, (2006), Springer Berlin, Heidelberg · Zbl 1110.74001
[23] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the mechanics and physics of solids, 11, 2, 127-140, (1963) · Zbl 0108.36902
[24] Hassani, B.; Hinton, E., A review of homogenization and topology optimization I-homogenization theory for media with periodic structure, Computers & structures, 69, 6, 707-717, (1998) · Zbl 0948.74048
[25] Hayes, M.; Shuvalov, A., On the extreme values of young’s modulus, the shear modulus, and poisson’s ratio for cubic materials, Journal of applied mechanics, 65, 3, 786-787, (1998)
[26] Henrici, P., Applied and computational complex analysis, vol. power series, integration, conformal mapping, location of zeros, (1974), Wiley New York · Zbl 0313.30001
[27] Hill, R., A self-consistent mechanics of composite materials, Journal of the mechanics and physics of solids, 13, 4, 213-222, (1965)
[28] Hori, M.; Nemat-Nasser, S., Double-inclusion model and overall moduli of multi-phase composites, Mechanics of materials, 14, 3, 189-206, (1993)
[29] Kachanov, M.; Tsukrov, I.; Shafiro, B., Effective moduli of solids with cavities of various shapes, Applied mechanics reviews, 47, 1, 151-174, (1994)
[30] Kang, H.; Milton, G., Solutions to the Pólya-szegö conjecture and the weak eshelby conjecture, Archive for rational mechanics and analysis, 188, 1, 93-116, (2008) · Zbl 1134.74013
[31] Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D., Determination of the size of the representative volume element for random composites: statistical and numerical approach, International journal of solids and structures, 40, 13-14, 3647-3679, (2003) · Zbl 1038.74605
[32] Kawashita, M.; Nozaki, H., Eshelby tensor of a polygonal inclusion and its special properties, Journal of elasticity, 64, 1, 71-84, (2001) · Zbl 1051.74004
[33] Klusemann, B.; Svendsen, B., Homogenization methods for multi-phase elastic composites: comparisons and benchmarks, Technische mechanik, 30, 4, 374-386, (2010)
[34] Klusemann, B.; Denzer, R.; Svendsen, B., Microstructure based modeling of residual stresses in WC-12co sprayed coatings, Journal of thermal spray technology, 21, 1, 96-107, (2012)
[35] Kozaczek, K.; Sinharoy, A.; Ruud, C.; Mcllree, A., Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking, ()
[36] Langer, S.A.; Fuller, E.R.; Carter, W.C., OOF: an image-based finite-element analysis of material microstructures, Computing in science and engineering, 3, 3, 15-23, (2001)
[37] Li, J., On micromechanics approximation for the effective thermoelastic moduli of multi-phase composite materials, Mechanics of materials, 31, 2, 149-159, (1999)
[38] Lielens, G., 1999. Micro-macro modeling of structured materials, Ph.D. Thesis, Université Catholique de Louvain, Belgium.
[39] Liu, L., Solutions to the eshelby conjectures, Proceedings of the royal society A: mathematical, physical and engineering science, 464, 2091, 573-594, (2008) · Zbl 1132.74010
[40] Markenscoff, X., On the shape of the eshelby inclusions, Journal of elasticity, 49, 2, 163-166, (1997) · Zbl 0906.73014
[41] Mejak, G., Eshebly tensors for a finite spherical domain with an axisymmetric inclusion, European journal of mechanics - A/solids, 30, 4, 477-490, (2011) · Zbl 1278.74025
[42] Mikdam, A.; Makradi, A.; Ahzi, S.; Garmestani, H.; Li, D.; Remond, Y., Effective conductivity in isotropic heterogeneous media using a strong-contrast statistical continuum theory, Journal of the mechanics and physics of solids, 57, 1, 76-86, (2009) · Zbl 1169.74039
[43] Monetto, I.; Drugan, W.J., A micromechanics-based nonlocal constitutive equation for elastic composites containing randomly oriented spheroidal heterogeneities, Journal of the mechanics and physics of solids, 52, 2, 359-393, (2004) · Zbl 1106.74394
[44] Monetto, I.; Drugan, W., A micromechanics-based nonlocal constitutive equation and minimum RVE size estimates for random elastic composites containing aligned spheroidal heterogeneities, Journal of the mechanics and physics of solids, 57, 9, 1578-1595, (2009) · Zbl 1371.74236
[45] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta metallurgica, 21, 5, 571-574, (1973)
[46] Moulinec, H.; Suquet, P., Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties, Physica B: condensed matter, 338, 1-4, 58-60, (2003)
[47] Mura, T., Micromechanics of defects in solids, (1982), Martinus Nijhoff The Hague, The Netherlands
[48] Nemat-Nasser, S.; Hori, M., Bounds and estimates of overall moduli of composites with periodic microstructure, Mechanics of materials, 15, 3, 163-181, (1993)
[49] Nemat-Nasser, S.; Hori, M., Micromechanics: overall properties of heterogeneous materials, (1999), Elsevier Amsterdam · Zbl 0924.73006
[50] Nogales, S.; Böhm, H.J., Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites, International journal of engineering science, 46, 6, 606-619, (2008) · Zbl 1213.74105
[51] Nozaki, H.; Taya, M., Elastic fields in a polygon-shaped inclusion with uniform eigenstrains, Journal of applied mechanics, 64, 3, 495-502, (1997) · Zbl 0899.73316
[52] Nozaki, H.; Taya, M., Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems, Journal of applied mechanics, 68, 3, 441-452, (2001) · Zbl 1110.74607
[53] Nye, J., Physical properties of crystals. their representation by tensors and matrices, (1957), Oxford University Press New York · Zbl 0079.22601
[54] Ogden, R.W.; Saccomandi, G.; Sgura, I., Fitting hyperelastic models to experimental data, Computational mechanics, 34, 6, 484-502, (2004) · Zbl 1109.74320
[55] Pahr, D.; Zysset, P., Influence of boundary conditions on computed apparent elastic properties of cancellous bone, Biomechanics and modeling in mechanobiology, 7, 463-476, (2008)
[56] Pierard, O.; Friebel, C.; Doghri, I., Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation, Composites science and technology, 64, 10-11, 1587-1603, (2004)
[57] Ranganathan, S.I.; Ostoja-Starzewski, M., Scaling function, anisotropy and the size of RVE in elastic random polycrystals, Journal of the mechanics and physics of solids, 56, 9, 2773-2791, (2008) · Zbl 1171.74410
[58] Rasool, A., 2011. Improved Multi-particle Unit Cell Models for Studying Particle Reinforced Composites, Ph.D. Thesis, TU Vienna, Austria.
[59] Reid, A.C.; Langer, S.A.; Lua, R.C.; Coffman, V.R.; Haan, S.; Garca, R.E., Image-based finite element mesh construction for material microstructures, Computational materials science, 43, 4, 989-999, (2008)
[60] Riemann, G.F.B., 1851. Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Ph.D. Thesis, Göttingen, Germany.
[61] Rodin, G.J., Eshelby’s inclusion problem for polygons and polyhedra, Journal of the mechanics and physics of solids, 44, 12, 1977-1995, (1996)
[62] Ru, C.Q., Analytic solution for eshelby’s problem of an inclusion of arbitrary shape in a plane or half-plane, Journal of applied mechanics, 66, 2, 315-322, (1999)
[63] Sevostianov, I.; Kachanov, M., Relations between compliances of inhomogeneities having the same shape but different elastic constants, International journal of engineering science, 45, 10, 797-806, (2007) · Zbl 1213.74081
[64] Sevostianov, I.; Kachanov, M.; Zohdi, T., On computation of the compliance and stiffness contribution tensors of non ellipsoidal inhomogeneities, International journal of solids and structures, 45, 16, 4375-4383, (2008) · Zbl 1169.74361
[65] Temizer, I.; Wriggers, P., An adaptive method for homogenization in orthotropic nonlinear elasticity, Computer methods in applied mechanics and engineering, 196, 35-36, 3409-3423, (2007) · Zbl 1173.74378
[66] Tillmann, W.; Vogli, E.; Baumann, I.; Matthaeus, G.; Ostrowski, T., Influence of the HVOF gas composition on the thermal spraying of WC-co submicron powders (−8 + 1 μm) to produce superfine structured cermet coatings, Journal of thermal spray technology, 17, 5, 924-932, (2008)
[67] Tillmann, W.; Klusemann, B.; Nebel, J.; Svendsen, B., Analysis of the mechanical properties of an arc-sprayed WC-fecsimn coating: nanoindentation and simulation, Journal of thermal spray technology, 20, 1, 328-335, (2011)
[68] Torquato, S., Random heterogeneous media: microstructure and improved bounds on effective properties, Applied mechanics reviews, 44, 2, 37-76, (1991)
[69] Torquato, S., Morphology and effective properties of disordered heterogeneous media, International journal of solids and structures, 35, 19, 2385-2406, (1998) · Zbl 0936.74032
[70] Torquato, S., Random heterogeneous media, (2002), Springer New York
[71] Torquato, S.; Lado, F., Improved bounds on the effective elastic moduli of random arrays of cylinders, Journal of applied mechanics, 59, 1, 1-6, (1992)
[72] Tsukrov, I.; Novak, J., Evaluation of the contribution of irregularly shaped holes into the effective elastic moduli by numerical conformal mapping, International journal of fracture, 107, 2, 21-28, (2001)
[73] Tsukrov, I.; Novak, J., Effective elastic properties of solids with two-dimensional inclusions of irregular shapes, International journal of solids and structures, 41, 24-25, 6905-6924, (2004) · Zbl 1179.74111
[74] Weng, G.J., The theoretical connection between Mori-tanaka’s theory and the hashin-shtrikman-walpole bounds, International journal of engineering science, 28, 11, 1111-1120, (1990) · Zbl 0719.73004
[75] Wiederkehr, T.; Klusemann, B.; Gies, D.; Müller, H.; Svendsen, B., An image morphing method for 3D reconstruction and FE-analysis of pore networks in thermal spray coatings, Computational materials science, 47, 4, 881-889, (2010)
[76] Wiederkehr, T.; Klusemann, B.; Müller, H.; Svendsen, B., Fast, curvature-based prediction of rolling forces for porous media based on a series of detailed simulations, Advances in engineering software, 42, 4, 142-150, (2011) · Zbl 1373.74030
[77] Yan, J.; Cheng, G.; Liu, S.; Liu, L., Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure, International journal of mechanical sciences, 48, 4, 400-413, (2006) · Zbl 1192.74312
[78] Zener, C.M.; Siegel, S., Elasticity and anelasticity of metals, The journal of physical and colloid chemistry, 53, 9, 1468, (1949)
[79] Zheng, Q.S.; Du, D.X., An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution, Journal of the mechanics and physics of solids, 49, 11, 2765-2788, (2001) · Zbl 1021.74037
[80] Zheng, Q.; Zhao, Z.; Du, D., Irreducible structure, symmetry and average of eshelby’s tensor fields in isotropic elasticity, Journal of the mechanics and physics of solids, 54, 2, 368-383, (2006) · Zbl 1120.74335
[81] Zou, W.; He, Q.; Huang, M.; Zheng, Q., Eshelby’s problem of non-elliptical inclusions, Journal of the mechanics and physics of solids, 58, 3, 346-372, (2010) · Zbl 1193.74011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.