×

Surface effects in anti-plane deformations of a micropolar elastic solid: integral equation methods. (English) Zbl 1348.74035

Summary: The theory of linear micropolar elasticity is used in conjunction with a new representation of micropolar surface mechanics to develop a comprehensive model for the deformations of a linearly micropolar elastic solid subjected to anti-plane shear loading. The proposed model represents the surface effect as a thin micropolar film of separate elasticity, perfectly bonded to the bulk. This model captures not only the micro-mechanical behavior of the bulk which is known to be considerable in many real materials but also the contribution of the surface effect which has been experimentally well observed for bodies with significant size-dependency and large surface area to volume ratios. The contribution of the surface mechanics to the ensuing boundary-value problem gives rise to a highly nonstandard boundary condition not accommodated by classical studies in this area. Nevertheless, the corresponding interior and exterior mixed boundary-value problems are formulated and reduced to systems of singular integro-differential equations using a representation of solutions in the form of modified single-layer potentials. Analysis of these systems demonstrates that the classical Noether theorems reduce to Fredholms theorems leading to results on well-posedness of the corresponding mathematical model.

MSC:

74B05 Classical linear elasticity
74A50 Structured surfaces and interfaces, coexistent phases
45E05 Integral equations with kernels of Cauchy type
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gurtin M.E., Murdoch A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291-323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[2] Gurtin M.E., Weissmuller J., Larche F.: A general theory of curved deformable interface in solids at equilibrium. Philos. Mag. A 78, 1093-1109 (1998) · doi:10.1080/01418619808239977
[3] Ru C.Q.: Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci. China 53, 536-544 (2010)
[4] Steigmann D.J., Ogden R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. Sect. A 453, 853-877 (1997) · Zbl 0938.74014 · doi:10.1098/rspa.1997.0047
[5] Chen T., Dvorak G.J., Yu C.C.: Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mech. 188, 39-54 (2007) · Zbl 1107.74010 · doi:10.1007/s00707-006-0371-2
[6] Antipov Y.A., Schiavone P.: Integro-differential equation for a finite crack in a strip with surface effects. Q. J. Mech. Appl. Math. 64, 87-106 (2011) · Zbl 1258.74185 · doi:10.1093/qjmam/hbq027
[7] Sigaeva T., Schiavone P.: Solvability of a theory of anti-plane shear with partially coated boundaries. Arch. Mech. 66, 113-125 (2014) · Zbl 1298.74165
[8] Sigaeva T., Schiavone P.: Solvability of the Laplace equation in a solid with boundary reinforcement. Z. Angew. Math. Phys. 65, 809-815 (2014) · Zbl 1302.74020 · doi:10.1007/s00033-013-0359-4
[9] Schiavone P., Ru C.Q.: Integral equation methods in plane-strain elasticity with boundary reinforcement. Proc. R. Soc. Lond. Sect. A 454, 2223-2242 (1998) · Zbl 0913.73014 · doi:10.1098/rspa.1998.0256
[10] Lakes, R.; Muhlhaus, H. B. (ed.), Experimental methods for study of Cosserat elastic solids and other generalized elastic continua, 1-22 (1995), New York · Zbl 0900.73005
[11] Voigt W.: Theoretische Studien über die Elastizitätsverhältnisse der Kristalle. Dieterichsche Verlags-buchhandlung, Göttingen (1887)
[12] Cosserat E., Cosserat F.: Théorie des Corps Déformables. A. Hermann et fils, Parisn (1909) · JFM 40.0862.02
[13] Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909-923 (1966) · Zbl 0145.21302
[14] Nowacki W.: Theory of Asymmetric Elasticity. Polish Scientific, Warsaw (1986) · Zbl 0604.73020
[15] Chen H., Hu G.K., Huang Z.P.: Effective moduli for micropolar composite with interface effect. Int. J. Solids Struct. 44, 8106-8118 (2007) · Zbl 1167.74534 · doi:10.1016/j.ijsolstr.2007.06.001
[16] Chen H., Liu X., Hu G.: Overall plasticity of micropolar composites with interface effect. Mech. Mater. 40, 721-728 (2008) · doi:10.1016/j.mechmat.2008.03.005
[17] Altenbach H., Eremeyev V.A., Lebedev L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM Z. Angew. Math. Mech. 90, 231-240 (2010) · Zbl 1355.74014 · doi:10.1002/zamm.200900311
[18] Altenbach H., Eremeyev V.A., Lebedev L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM Z. Angew. Math. Mech. 91, 699-710 (2011) · Zbl 1325.74023 · doi:10.1002/zamm.201000214
[19] Eremeyev V.A., Lebedev L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204-217 (2013) · Zbl 07280041 · doi:10.1177/1081286512462187
[20] Constanda C.: A mathematical analysis of bending of plates with transverse shear deformation. Longman Scientific & Technical, Harlow (1990) · Zbl 0692.73058
[21] Potapenko S., Schiavone P., Mioduchowski A.: Anti-plane shear deformations in a theory of linear elasticity with microstructure. Z. Angew. Math. Phys. 56, 516-528 (2005) · Zbl 1065.74009 · doi:10.1007/s00033-004-2028-0
[22] Sigaeva, T., Schiavone, P.: Influence of boundary elasticity on a couple stress elastic solid (under review) · Zbl 1328.74077
[23] Schiavone , Schiavone : Integral equation methods in plane asymmetric elasticity. J. Elast. 43, 31-43 (1996) · Zbl 0878.73015
[24] Potapenko S., Schiavone P., Mioduchowski A.: On the solution of mixed problems in anti-plane micropolar elasticity. Math. Mech. Solids 8, 151-160 (2003) · Zbl 1034.74010 · doi:10.1177/108128603029774
[25] Ishanov R.S.: On a class of singular integro-differential equations. Sov. Math. Dokl. 1, 529-532 (1960) · Zbl 0173.40402
[26] Vekua N.P.: Systems of singular integral equations. Noordhoff, Groningen (1967) · Zbl 0166.09802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.