# zbMATH — the first resource for mathematics

The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. (English) Zbl 1348.65056
Summary: The finite cell method is an embedded domain method, which combines the fictitious domain approach with higher-order finite elements, adaptive integration, and weak enforcement of unfitted essential boundary conditions. Its core idea is to use a simple unfitted structured mesh of higher-order basis functions for the approximation of the solution fields, while the geometry is captured by means of adaptive quadrature points. This eliminates the need for boundary conforming meshes that require time-consuming and error-prone mesh generation procedures, and opens the door for a seamless integration of very complex geometric models into finite element analysis. At the same time, the finite cell method achieves full accuracy, i.e. optimal rates of convergence, when the mesh is refined, and exponential rates of convergence, when the polynomial degree is increased. Due to the flexibility of the quadrature based geometry approximation, the finite cell method can operate with almost any geometric model, ranging from boundary representations in computer aided geometric design to voxel representations obtained from medical imaging technologies. In this review article, we first provide a concise introduction to the basics of the finite cell method. We then summarize recent developments of the technology, with particular emphasis on the research topics in which we have been actively involved. These include the finite cell method with B-spline and NURBS basis functions, the treatment of geometric nonlinearities for large deformation analysis, the weak enforcement of boundary and coupling conditions, and local refinement schemes. We illustrate the capabilities and advantages of the finite cell method with several challenging examples, e.g. the image-based analysis of foam-like structures, the patient-specific analysis of a human femur bone, the analysis of volumetric structures based on CAD boundary representations, and the isogeometric treatment of trimmed NURBS surfaces. We conclude our review by briefly discussing some key aspects for the efficient implementation of the finite cell method.

##### MSC:
 65D17 Computer-aided design (modeling of curves and surfaces) 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
##### Software:
Rhinoceros; NURBS; ISOGAT; HYPLAS; IIMPACK; FCMLab
Full Text:
##### References:
 [1] Abedian, A; Parvizian, J; Düster, A; Khademyzadeh, H; Rank, E, Performance of different integration schemes in facing discontinuities in the finite cell method, Int J Comput Methods, 10, 1-24, (2013) · Zbl 1359.65245 [2] Abedian, A; Parvizian, J; Düster, A; Rank, E, The finite cell method for the J$$_2$$ flow theory of plasticity, Finite Elem Anal Des, 69, 37-47, (2013) [3] Agoston MK (2005) Computer graphics and geometric modeling, vol 2. Springer, Berlin [4] Allaire, G; Jouve, F; Toader, A-M, Structural optimization using sensitivity analysis and a level-set method, J Comput Phys, 194, 363-393, (2004) · Zbl 1136.74368 [5] Annavarapu, C; Hautefeuille, M; Dolbow, JE, A robust nitsche’s formulation for interface problems, Comput Methods Appl Mech Eng, 225, 44-54, (2012) · Zbl 1253.74096 [6] Apostolatos, A; Schmidt, R; Wüchner, R; Bletzinger, K-U, A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis, Int J Numer Methods Eng, 97, 473-504, (2014) · Zbl 1352.74315 [7] McNeel & Associates (2013) Rhinoceros-accurate freeform modeling for Windows. http://www.rhino3d.com [8] Babuška I, Banerjee U, Osborn JE (2003) Meshless and generalized finite element methods: a survey of some major results. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations. Springer, Berlin, pp 1-20 · Zbl 1248.65024 [9] Babuška, I, The finite element method with penalty, Math Comput, 27, 221-228, (1972) · Zbl 0299.65057 [10] Baiges, J; Codina, R, The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems, Int J Numer Methods Eng, 81, 1529-1557, (2010) · Zbl 1183.74258 [11] Baiges, J; Codina, R; Henke, F; Shahmiri, S; Wall, WA, A symmetric method for weakly imposing dirchlet boundary conditions in embedded finite element meshes, Int J Numer Methods Eng, 90, 636-658, (2012) · Zbl 1242.76108 [12] Banhart, J, Manufacture, characterization and application of cellular metals and metal foams, Prog Mater Sci, 46, 559-632, (2001) [13] Bastian, P; Engwer, C, An unfitted finite element method using discontinuous Galerkin, Int J Numer Methods Eng, 79, 1557-1576, (2009) · Zbl 1176.65131 [14] Bathe K-J (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs [15] Bazilevs, Y; Calo, VM; Cottrell, JA; Evans, JA; Hughes, TJR; Lipton, S; Scott, MA; Sederberg, TW, Isogeometric analysis using T-splines, Comput Methods Appl Mech Eng, 199, 229-263, (2010) · Zbl 1227.74123 [16] Bazilevs, Y; Hsu, MC; Scott, MA, Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput Methods Appl Mech Eng, 249-252, 28-41, (2012) · Zbl 1348.74094 [17] Bazilevs, Y; Hughes, TJR, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput Fluids, 36, 12-26, (2007) · Zbl 1115.76040 [18] Bazilevs, Y; Michler, CM; Calo, VM; Hughes, TJR, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes, Comput Methods Appl Mech Eng, 199, 780-790, (2010) · Zbl 1406.76023 [19] Beirão da Veiga, L; Buffa, A; Cho, D; Sangalli, G, Analysis-suitable T-splines are dual-compatible, Comput Methods Appl Mech Eng, 249, 42-51, (2012) · Zbl 1348.65048 [20] Belytschko T, Liu WK, Moran B (2006) Nonlinear finite elements for continua and structures. Wiley, NewYork [21] Belytschko, T; Parimi, C; Moës, N; Sukumar, N; Usui, S, Structured extended finite element methods for solids defined by implicit surfaces, Int J Numer Methods Eng, 56, 609-635, (2003) · Zbl 1038.74041 [22] Bindick, S; Stiebler, M; Krafczyk, M, Fast kd-tree-based hierarchical radiosity for radiative heat transport problems, Int J Numer Methods Eng, 86, 1082-1100, (2011) · Zbl 1235.80043 [23] Bishop, J, Rapid stress analysis of geometrically complex domains using implicit meshing, Comput Mech, 30, 460-478, (2003) · Zbl 1038.74626 [24] Bonet J, Wood R (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge · Zbl 1142.74002 [25] Borden, MJ; Scott, MA; Evans, JA; Hughes, TJR, Isogeometric finite element data structures based on Bézier extraction of NURBS, Int J Numer Methods Eng, 87, 15-47, (2011) · Zbl 1242.74097 [26] Bornemann, B; Cirak, F, A subdivision-based implementation of the hierarchical b-spline finite element method, Comput Methods Appl Mech Eng, 253, 584-598, (2013) · Zbl 1297.65147 [27] Bungartz, H-J; Griebel, M, Sparse grids, Acta Numer, 13, 147-269, (2004) · Zbl 1118.65388 [28] Bungartz H-J, Griebel M, Zenger C (2004) Introduction to computer graphics. Charles River Media Inc, Prague · Zbl 0869.68102 [29] Burman, E; Hansbo, P, Fictitious domain finite element methods using cut elements: a stabilized Lagrange multiplier method, Comput Methods Appl Mech Eng, 62, 2680-2686, (2010) · Zbl 1231.65207 [30] Burman, E; Hansbo, P, Fictitious domain finite element methods using cut elements: a stabilized Nitsche method, Appl Numer Math, 62, 328-341, (2012) · Zbl 1316.65099 [31] Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, Berlin · Zbl 1093.76002 [32] Canuto C, Hussaini MY, Quarteroni A, Zang TA (2007) Spectral methods: evolution to complex geometries and applications to fluid dynamics. Springer, Berlin · Zbl 1121.76001 [33] Chapman B, Jost G, Van Der Pas R (2008) Using OpenMP: portable shared memory parallel programming. The MIT Press, Cambridge [34] Chilton, L; Suri, M, On the selection of a locking-free hp element for elasticity problems, Int J Numer Methods Eng, 40, 2045-2062, (1997) · Zbl 0886.73061 [35] Cohen, E; Martin, T; Kirby, RM; Lyche, T; Riesenfeld, RF, Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis, Comput Methods Appl Mech Eng, 199, 334-356, (2010) · Zbl 1227.74109 [36] Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: towards integration of CAD and FEA. Wiley, New York · Zbl 1378.65009 [37] de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, New York [38] Dede’, L; Borden, MJ; Hughes, TJR, Isogeometric analysis for topology optimization with a phase field model, Arch Comput Methods Eng, 19, 427-465, (2012) · Zbl 1354.74224 [39] Pino, S; Pironneau, O; Kuznetsov, Y (ed.); Neittanmaki, P (ed.); Pironneau, O (ed.), A fictitious domain based general PDE solver, (2003), Barcelona [40] Demkowicz L, Kurtz J, Pardo D, Paszynski M, Rachowicz W, Zdunek A (2007) Computing with Hp-adaptive finite elements, vol 2: frontiers three-dimensional elliptic and Maxwell problems with applications. Chapman & Hall/CRC, London. · Zbl 1148.65001 [41] Demkowicz LF (2006) Computing with Hp-adaptive finite elements, vol 1: one and two dimensional elliptic and Maxwell problems. Chapman & Hall/CRC, London. [42] Dokken, T; Lyche, T; Pettersen, KF, Polynomial splines over locally refined box-partitions, Comput Aided Geom Des, 30, 331-356, (2013) · Zbl 1264.41011 [43] Dolbow, J; Harari, I, An efficient finite element method for embedded interface problems, Int J Numer Methods Eng, 78, 229-252, (2009) · Zbl 1183.76803 [44] Dong, S; Yosibash, Z, A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems, Comput Struct, 87, 59-72, (2009) [45] Düster A (2001) High order finite elements for three-dimensional, thin-walled nonlinear continua. Dissertation, Technische Universität München. · Zbl 1366.74075 [46] Düster, A; Bröker, H; Rank, E, The $$p$$-version of the finite element method for three-dimensional curved thin walled structures, Int J Numer Methods Eng, 52, 673-703, (2001) · Zbl 1058.74079 [47] Düster, A; Hartmann, S; Rank, E, P-FEM applied to finite isotropic hyperelastic bodies, Comput Methods Appl Mech Eng, 192, 5147-5166, (2003) · Zbl 1053.74043 [48] Düster, A; Niggl, A; Rank, E, Applying the hp-d version of the FEM to locally enhance dimensionally reduced models, Comput Methods Appl Mech Eng, 196, 3524-3533, (2007) · Zbl 1173.74413 [49] Düster, A; Parvizian, J; Yang, Z; Rank, E, The finite cell method for three-dimensional problems of solid mechanics, Comput Methods Appl Mech Eng, 197, 3768-3782, (2010) · Zbl 1194.74517 [50] Elguedj, T; Bazilevs, Y; Calo, VM; Hughes, TJR, $$\bar{B}$$ and $$\bar{F}$$ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput Methods Appl Mech Eng, 197, 2732-2762, (2008) · Zbl 1194.74518 [51] Embar, A; Dolbow, J; Harari, I, Imposing Dirichlet boundary conditions with nitsche’s method and spline-based finite elements, Int J Numer Methods Eng, 83, 877-898, (2010) · Zbl 1197.74178 [52] Evans, JA; Bazilevs, Y; Babuška, I; Hughes, TJR, N-widths, sup-infs, and optimality ratios for the $$k$$-version of the isogeometric finite element method, Comput Methods Appl Mech Eng, 198, 1726-1741, (2009) · Zbl 1227.65093 [53] Evans, JA; Hughes, TJR, Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations, Math Models Methods Appl Sci, 23, 1421, (2013) · Zbl 1383.76337 [54] Farin G (2002) Curves and surfaces for computer aided geometric design. Morgan Kaufmann Publishers, Los Altos · Zbl 0850.68323 [55] Fernández-Méndez, S; Huerta, A, Imposing essential boundary conditions in mesh-free methods, Comput Methods Appl Mech Eng, 193, 1257-1275, (2004) · Zbl 1060.74665 [56] Flemisch, B; Wohlmuth, BI, Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3d, Comput Methods Appl Mech Eng, 196, 1589-1602, (2007) · Zbl 1173.74416 [57] Franke, D; Düster, A; Nübel, V; Rank, E, A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2d Hertzian contact problem, Comput Mech, 45, 513-522, (2010) · Zbl 1398.74330 [58] Gerstenberger, A; Wall, WA, Enhancement of fixed-grid methods towards complex fluid-structure interaction applications, Int J Numer Methods Fluids, 57, 1227-1248, (2008) · Zbl 1338.74038 [59] Gerstenberger, A; Wall, WA, An embedded Dirichlet formulation for 3D continua, Int J Numer Methods Eng, 82, 537-563, (2010) · Zbl 1188.74056 [60] Giannelli, C; Jüttler, B; Speleers, H, THB-splines: the truncated basis for hierarchical splines, Comput Aided Geom Des, 29, 485-498, (2012) · Zbl 1252.65030 [61] Glowinski R, Kuznetsov Y (2007) Distributed lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196:1498- 1506 · Zbl 1173.65369 [62] Griebel, M; Schweitzer, MA; Hildebrandt, S (ed.); Karcher, H (ed.), A particle-partition of unity method. part V: boundary conditions, 519-542, (2004), Berlin · Zbl 1033.65102 [63] Grossmann, D; Jüttler, B; Schlusnus, H; Barner, J; Vuong, AH, Isogeometric simulation of turbine blades for aircraft engines, Comput Aided Geom Des, 29, 519-531, (2012) · Zbl 1250.65025 [64] Hansbo, A; Hansbo, P, An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput Methods Appl Mech Eng, 191, 537-552, (2002) · Zbl 1035.65125 [65] Hansbo, P, Nitsche’s method for interface problems in computational mechanics, GAMM Mitteilungen, 28, 183-206, (2005) · Zbl 1179.65147 [66] Harari, I; Dolbow, J, Analysis of an efficient finite element method for embedded interface problems, Comput Mech, 46, 205-211, (2010) · Zbl 1190.65172 [67] Harari, I; Shavelzon, E, Embedded kinematic boundary conditions for thin plate bending by nitsche’s approach, Int J Numer Methods Eng, 92, 99-114, (2012) · Zbl 1352.74162 [68] Haslinger, J; Renard, Y, A new fictitious domain approach inspired by the extended finite element method, SIAM J Numer Anal, 47, 1474-1499, (2009) · Zbl 1205.65322 [69] Hautefeuille, M; Annavarapu, C; Dolbow, JE, Robust imposition of Dirichlet boundary conditions on embedded surfaces, Int J Numer Methods Eng, 90, 40-64, (2012) · Zbl 1242.76124 [70] Heisserer, U; Hartmann, S; Düster, A; Yosibash, Z, On volumetric locking-free behaviour of p-version finite elements under finite deformations, Commun Numer Methods Eng, 24, 1019-1032, (2008) · Zbl 1153.74043 [71] Hesthaven JS, Gottlieb S, Gottlieb D (2007) Spectral methods for time-dependent problems. Cambridge University Press, Cambridge · Zbl 1111.65093 [72] Höllig K (2003) Finite element methods with B-Splines. Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1020.65085 [73] Höllig K, Hörner J, Hoffacker A (2012) Finite element analysis with b-splines: weighted and isogeometric methods. Curves and surfaces, vol 6920, Lecture Notes in Computer ScienceSpringer, Berlin, pp 330-350. · Zbl 1352.65039 [74] Höllig, K; Reif, U; Wipper, J, Weighted extended b-spline approximation of Dirichlet problems, SIAM J Numer Anal, 39, 442-462, (2001) · Zbl 0996.65119 [75] Holzapfel GA (2000) Nonlinear solid mechanics. A continuum approach for engineering, Wiley, New York · Zbl 0980.74001 [76] Hsu, MC; Akkerman, I; Bazilevs, Y, Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions, Comput Mech, 50, 499-511, (2012) · Zbl 06128533 [77] Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York [78] Hughes, TJR; Cottrell, JA; Bazilevs, Y, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195, (2005) · Zbl 1151.74419 [79] Hughes TJR, Evans JA, Reali A (2013) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. ICES REPORT 13-24, The Institute for Computational Engineering and Sciences, The University of Texas at Austin. · Zbl 0229.65079 [80] Ibrahimbegović A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods. Springer, Berlin · Zbl 1168.74002 [81] Johannessen, KA; Kvamsdal, T; Dokken, T, Isogeometric analysis using LR B-splines, Comput Methods Appl Mech Eng, 269, 471-514, (2014) · Zbl 1296.65021 [82] Joulaian, M; Düster, A, Local enrichment of the finite cell method for problems with material interfaces, Comput Mech, 52, 741-762, (2013) · Zbl 1311.74123 [83] Juntunen, J; Stenberg, R, Nitsche’s method for general boundary conditions, Math Comput, 78, 1353-1374, (2009) · Zbl 1198.65223 [84] Kagan, P; Fischer, A, Integrated mechanically based CAE system using B-spline finite elements, Comput Aided Des, 32, 539-552, (2000) · Zbl 1206.65050 [85] Keyak, JH; Falkinstein, Y, Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load, Med Eng Phys, 25, 781-787, (2003) [86] Kim, H-J; Seo, Y-D; Youn, S-K, Isogeometric analysis for trimmed CAD surfaces, Comput Methods Appl Mech Eng, 198, 2982-2995, (2009) · Zbl 1229.74131 [87] Kim, H-J; Seo, Y-D; Youn, S-K, Isogeometric analysis with trimming technique for problems of arbitrary complex topology, Comput Methods Appl Mech Eng, 199, 45-48, (2010) [88] Kopriva DA (2009) Implementing spectral methods for partial differential equations. Springer, Berlin · Zbl 1172.65001 [89] Krause, R; Rank, E, Multiscale computations with a combination of the h-and p-versions of the finite element method, Comput Methods Appl Mech Eng, 192, 3959-3983, (2003) · Zbl 1037.74047 [90] Kreikemeier, J, Modelling of phase boundaries via the GAUSS-point method, Technische Mechanik, 32, 658-666, (2012) [91] Krysl, P; Grinspun, E; Schröder, P, Natural hierarchical refinement for finite element methods, Int J Numer Methods Eng, 56, 1109-1124, (2003) · Zbl 1078.74660 [92] Kudela L (2013) Highly Accurate Subcell Integration in the Context of The Finite Cell Method. Master Thesis, Technische Universität München. · Zbl 1406.76023 [93] Legay, A; Wang, HW; Belytschko, T, Strong and weak arbitrary discontinuities in spectral finite elements, Int J Numer Methods Eng, 64, 991-1008, (2005) · Zbl 1167.74045 [94] Legrain, G, A NURBS enhanced extended finite element approach for unfitted CAD analysis, Comput Mech, 1, 34, (2013) · Zbl 1311.65017 [95] Legrain, G; Cartraud, P; Perreard, I; Moës, N, An X-FEM and level set computational approach for image-based modelling: application to homogenization, Int J Numer Methods Eng, 86, 915-934, (2011) · Zbl 1235.74297 [96] Legrain, G; Chevaugeon, N; Dréau, K, High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation, Comput Methods Appl Mech Eng, 241, 172-189, (2012) · Zbl 1353.74071 [97] Lew, AJ; Buscaglia, GC, A discontinuous Galerkin-based immersed boundary method, Int J Numer Methods Eng, 76, 427-454, (2008) · Zbl 1195.76258 [98] Lew, AJ; Negri, M, Optimal convergence of a discontinuous-Galerkin-based immersed boundary method, ESAIM Math Model Numer Anal, 45, 651-674, (2011) · Zbl 1269.65108 [99] Li Z, Ito K (2006) The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1122.65096 [100] Lipton, S; Evans, JA; Bazilevs, Y; Elguedj, T; Hughes, TJR, Robustness of isogeometric structural discretizations under severe mesh distortion, Comput Methods Appl Mech Eng, 199, 357-373, (2010) · Zbl 1227.74112 [101] Intact Solutions LLC (2009) Scan&solve$$^{TM}$$: Fea without meshing (white paper). http://www.intact-solutions.com/Scan&Solve.pdf · Zbl 1038.74041 [102] Löhner, R; Cebral, RJ; Camelli, FE; Appanaboyina, S; Baum, JD; Mestreau, EL; Soto, OA, Adaptive embedded and immersed unstructured grid techniques, Comput Methods Appl Mech Eng, 197, 2173-2197, (2008) · Zbl 1158.76408 [103] Lui, SH, Spectral domain embedding for elliptic PDEs in complex domains, J Comput Appl Math, 225, 541-557, (2009) · Zbl 1160.65346 [104] Mergheim, J; Steinmann, P, A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities, Comput Methods Appl Mech Eng, 195, 5037-5052, (2006) · Zbl 1126.74050 [105] Mittal, R; Iaccarino, G, Immersed boundary methods, Annu Rev Fluid Mech, 37, 239-261, (2005) · Zbl 1117.76049 [106] Moës, N; Cloirec, M; Cartraud, P; Remacle, J-F, A computational approach to handle complex microstructure geometries, Comput Methods Appl Mech Eng, 192, 3163-3177, (2003) · Zbl 1054.74056 [107] Moumnassi, M; Belouettar, S; Béchet, E; Bordas, SPA; Quoirin, D; Potier-Ferry, M, Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces, Comput Methods Appl Mech Eng, 200, 774-796, (2011) · Zbl 1225.65111 [108] Mousavi, SE; Sukumar, N, Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method, Comput Methods Appl Mech Eng, 199, 3237-3249, (2010) · Zbl 1225.74099 [109] Mousavi, SE; Sukumar, N, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput Mech, 47, 535-554, (2011) · Zbl 1221.65078 [110] Nagy A, Benson DJ (2014) On the numerical integration of trimmed isogeometric elements. Preprint. · Zbl 1176.65131 [111] Neittaanmäki, P; Tiba, D, An embedding domains approach in free boundary problems and optimal design, SIAM J Control Optim, 33, 1587-1602, (1995) · Zbl 0843.49024 [112] Netz, T; Düster, A; Hartmann, S, High-order finite elements compared to low-order mixed element formulations, ZAMM J Appl Math Mech, 93, 163-176, (2013) · Zbl 1332.74048 [113] Nguyen-Thanh, N; Kiendl, J; Nguyen-Xuan, H; Wüchner, R; Bletzinger, KU; Bazilevs, Y; Rabczuk, T, Rotation free isogeometric thin shell analysis using PHT-splines, Comput Methods Appl Mech Eng, 200, 3410-3424, (2011) · Zbl 1230.74230 [114] Nguyen-Thanh, N; Nguyen-Xuan, H; Bordas, SPA; Rabczuk, T, Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput Methods Appl Mech Eng, 200, 1892-1908, (2011) · Zbl 1228.74091 [115] Nitsche, JA, Über ein variationsprinzip zur Lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36, 9- 15, (1970) · Zbl 0229.65079 [116] Noel, AT; Szabó, BA, Formulation of geometrically non-linear problems in the spatial reference frame, Int J Numer Methods Eng, 40, 1263-1280, (1997) · Zbl 0887.73066 [117] Nübel, V; Düster, A; Rank, E, An rp-adaptive finite element method for the deformation theory of plasticity, Comput Mech, 39, 557-574, (2007) · Zbl 1163.74046 [118] Parussini, L; Pediroda, V, Fictitious domain approach with hp-finite element approximation for incompressible fluid flow, J Comput Phys, 228, 3891-3910, (2009) · Zbl 1169.76037 [119] Parvizian, J; Düster, A; Rank, E, Finite cell method: h- and p- extension for embedded domain methods in solid mechanics, Comput Mech, 41, 122-133, (2007) · Zbl 1162.74506 [120] Parvizian, J; Düster, A; Rank, E, Toplogy optimization using the finite cell method, Optim Eng, 13, 57-78, (2012) · Zbl 1293.74357 [121] Peskin, C, The immersed boundary method, Acta Numer, 11, 479-517, (2002) · Zbl 1123.74309 [122] Pham, DL; Xu, C; Prince, JL, A survey of current methods in medical image segmentation, Annu Rev Biomed Eng, 2, 315-337, (2000) [123] Piegl L, Tiller W (1997) The NURBS book. Springer, Berlin · Zbl 0868.68106 [124] Ramière, I; Angot, P; Belliard, M, A general fictitious domain method with immersed jumps and multilevel nested structured meshes, J Comput Phys, 225, 1347-1387, (2007) · Zbl 1122.65115 [125] Ramière, I; Angot, P; Belliard, M, A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput Methods Appl Mech Eng, 196, 766-781, (2007) · Zbl 1121.65364 [126] Rangarajan, R; Lew, AJ; Buscaglia, GC, A discontinuous-Galerkin-based immersed boundary method with non-homogeneous boundary conditions and its application to elasticity, Comput Methods Appl Mech Eng, 198, 1513-1534, (2009) · Zbl 1227.74091 [127] Ranjbar, M; Mashayekhi, M; Parvizian, J; Düster, A; Rank, E, Using the finite cell method to predict crack initiation in ductile materials, Comput Mater Sci, 82, 427-434, (2014) [128] Rank, E, Adaptive remeshing and h-p domain decomposition, Comput Methods Appl Mech Eng, 101, 299-313, (1992) · Zbl 0782.65145 [129] Rank E (1993) A zooming-technique using a hierarchical hp-version of the finite element method. In: Whiteman J (ed) The mathematics of finite elements and applications. John Wiley & Sons, Chichester. · Zbl 1115.76040 [130] Rank, E; Düster, A; Nübel, V; Preusch, K; Bruhns, OT, High order finite elements for shells, Comput Methods Appl Mech Eng, 194, 2494-2512, (2005) · Zbl 1082.74056 [131] Rank, E; Kollmannsberger, S; Sorger, C; Düster, A, Shell finite cell method: a high order fictitious domain approach for thin-walled structures, Comput Methods Appl Mech Eng, 200, 3200-3209, (2011) · Zbl 1230.74232 [132] Rank, E; Krause, R, A multiscale finite element method, Comput Struct, 64, 139-144, (1997) · Zbl 0918.73222 [133] Rank E, Ruess M, Kollmannsberger S, Schillinger D, Düster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249-250: 104-115 · Zbl 1348.74340 [134] Richter, T; Wick, T, Finite elements for fluid-structure interaction in ale and fully Eulerian coordinates, Comput Methods Appl Mech Eng, 199, 2633-2642, (2010) · Zbl 1231.74436 [135] Rogers DF (2001) An introduction to NURBS with historical perspective. Morgan Kaufmann Publishers, Los Altos [136] Rueberg, T; Cirak, F, Subdivision-stabilised immersed B-spline finite elements for moving boundary flows, Comput Methods Appl Mech Eng, 209-212, 266-283, (2012) · Zbl 1243.76031 [137] Ruess, M; Schillinger, D; Bazilevs, Y; Varduhn, V; Rank, E, Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, Int J Numer Methods Eng, 95, 811-846, (2013) · Zbl 1352.65643 [138] Ruess, M; Schillinger, D; Özcan, AI; Rank, E, Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput Methods Appl Mech Eng, 269, 46-71, (2014) · Zbl 1296.74013 [139] Ruess, M; Tal, D; Trabelsi, N; Yosibash, Z; Rank, E, The finite cell method for bone simulations: verification and validation, Biomech Model Mechanobiol, 11, 425-437, (2012) [140] Ruess M, Varduhn V, Yosibash Z, Rank E (2012) A parallel high-order fictitious domain approach for biomechanical applications. In: Parallel and distributed computing, international symposium, pp 279-285. [141] Rvachev, VL; Sheiko, TL; Shapiro, V; Tsukanov, I, On completeness of rfm solution structures, Comput Mech, 25, 305-316, (2000) · Zbl 1129.74348 [142] Rvachev, VL; Sheiko, TL; Shapiro, V; Tsukanov, I, Transfinite interpolation over implicitly defined sets, Comput Aided Geom Des, 18, 195-220, (2001) · Zbl 0971.68174 [143] Sadd MH (2009) Elasticity, theory, applications, and numerics. Academic Press, London [144] Samet H (1990) The design and analysis of spatial data structures, vol 199. Addison-Wesley, Reading. [145] Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann Publishers, Los Altos · Zbl 1139.68022 [146] Sanches, R; Bornemann, P; Cirak, F, Immersed B-spline (i-spline) finite element method for geometrically complex domains, Comput Methods Appl Mech Eng, 200, 1432-1445, (2011) · Zbl 1228.74097 [147] Sanders, JD; Laursen, TA; Puso, MA, A Nitsche embedded mesh method, Comput Mech, 49, 243-257, (2012) · Zbl 1366.74075 [148] Sauerland, H; Fries, TP, The extended finite element method for two-phase and free-surface flows: a systematic study, J Comput Phys, 230, 3369-3390, (2011) · Zbl 1316.76050 [149] Schileo, E; Dall’Ara, E; Taddei, F; Malandrino, A; Schotkamp, T; Baleani, M; Viceconti, M, An accurate estimation of bone density improves the accuracy of subject-specific finite element models, J Biomech, 41, 2483-2491, (2008) · Zbl 1151.94438 [150] Schillinger D (2012) The $$p$$- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. Dissertation, Technische Universität München, http://d-nb.info/103009943X/34 [151] Schillinger D, Cai Q, Mundani R-P, Rank E (2013) Nonlinear structural analysis of complex CAD and image based geometric models with the finite cell method. In: Bader M (ed) Lecture notes in computational science and engineering, vol 93. Springer, Berlin [152] Schillinger, D; Dede’, L; Scott, MA; Evans, JA; Borden, MJ; Rank, E; Hughes, TJR, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput Methods Appl Mech Eng, 249-250, 116- 150, (2012) · Zbl 1348.65055 [153] Schillinger D, Düster A, Rank E (2012) The hp-d adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89:1171-1202 · Zbl 1242.74161 [154] Schillinger D, Evans JA, Frischmann F, Hiemstra RR, Hsu M-C, Hughes TJR (2014) Collocation on standard hp finite element meshes: reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. ICES REPORT 14-01, The University of Texas at Austin [155] Schillinger, D; Evans, JA; Reali, A; Scott, MA; Hughes, TJR, Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput Methods Appl Mech Eng, 267, 170-232, (2013) · Zbl 1286.65174 [156] Schillinger D, Hossain SJ, Hughes TJR (2014) Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Comput Methods Appl Mech Eng 277:1-45 · Zbl 1425.65177 [157] Schillinger, D; Kollmannsberger, S; Mundani, R-P; Rank, E, The finite cell method for geometrically nonlinear problems of solid mechanics, IOP Conf Ser Mater Sci Eng, 10, 012170, (2010) [158] Schillinger, D; Rank, E, An unfitted $$hp$$ adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput Methods Appl Mech Eng, 200, 3358-3380, (2011) · Zbl 1230.74197 [159] Schillinger, D; Ruess, M; Düster, A; Rank, E, The finite cell method for large deformation analysis, PAMM, 11, 271-272, (2011) [160] Schillinger, D; Ruess, M; Zander, N; Bazilevs, Y; Düster, A; Rank, E, Small and large deformation analysis with the $$p$$- and B-spline versions of the finite cell method, Comput Mech, 50, 445-478, (2012) · Zbl 1398.74401 [161] Schmidt, R; Kiendl, J; Bletzinger, KU; Wüchner, R, Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis, Comput Vis Sci, 13, 315-330, (2010) · Zbl 1216.65019 [162] Scott, MA; Li, X; Sederberg, TW; Hughes, TJR, Local refinement of analysis-suitable T-splines, Comput Methods Appl Mech Eng, 213-216, 206-222, (2012) · Zbl 1243.65030 [163] Scott, MA; Simpson, RN; Evans, JA; Lipton, S; Bordas, SPA; Hughes, TJR; Sederberg, TW, Isogeometric boundary element analysis using unstructured T-splines, Comput Methods Appl Mech Eng, 254, 197-221, (2013) · Zbl 1297.74156 [164] Scott, MA; Thomas, DC; Evans, EJ, Isogeometric spline forests, Comput Methods Appl Mech Eng, 269, 222-264, (2014) · Zbl 1296.65023 [165] Sehlhorst, H-G; Jänicke, J; Düster, A; Rank, E; Steeb, H; Diebels, S, Numerical investigations of foam-like materials by nested high-order finite element methods, Comput Mech, 45, 45-59, (2009) · Zbl 1398.74402 [166] Seo, Y-D; Kim, H-J; Youn, S-K, Isogeometric topology optimization using trimmed spline surfaces, Comput Methods Appl Mech Eng, 199, 3270-3296, (2010) · Zbl 1225.74068 [167] Shahmiri, S; Gerstenberger, A; Wall, WA, An XFEM-based embedding mesh technique for incompressible viscous flows, Int J Numer Methods Fluids, 65, 166-190, (2011) · Zbl 1428.76103 [168] Shepherd, JF; Johnson, CR, Hexahedral mesh generation constraints, Eng Comput, 24, 195-213, (2008) [169] Simpson, RN; Scott, MA; Taus, M; Thomas, DC; Lian, H, Acoustic isogeometric boundary element analysis, Comput Methods Appl Mech Eng, 269, 265-290, (2014) · Zbl 1296.65175 [170] Stavrev A (2012) The role of higher-order geometry approximation and accurate quadrature in NURBS based immersed boundary methods. Master Thesis, Technische Universität München. · Zbl 1252.65030 [171] Stenberg R (1998) Mortaring by a method of J.A. Nitsche. In: Idelshon SR, Oñate E, Dvorkin EN (eds) Computational mechanics: new trends and applications. CIMNE, Barcelona, Spain, pp 47-83 · Zbl 1035.65125 [172] Sukumar, N; Chopp, DL; Moës, N; Belytschko, T, Modeling holes and inclusions by level sets in the extended finite-element method, Comput Methods Appl Mech Eng, 190, 6183-6200, (2001) · Zbl 1029.74049 [173] Süli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge · Zbl 1033.65001 [174] Suri, M, Analytical and computational assessment of locking in the hp finite element method, Comput Methods Appl Mech Eng, 133, 347-371, (1996) · Zbl 0893.73070 [175] Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York · Zbl 0792.73003 [176] Szabó BA, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R, and Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1, chapter 5. Wiley, New York, pp 119-139. · Zbl 1190.65172 [177] Taddei, F; Pani, M; Zovatto, L; Tonti, E; Viceconti, M, A new meshless approach for subject-specific strain prediction in long bones: evaluation of accuracy, Clin Biomech, 23, 1192-1199, (2008) [178] Trabelsi, N; Yosibash, Z; Milgrom, C, Validation of subject-specific automated p-fe analysis of the proximal femur, J Biomech, 42, 234-241, (2009) [179] Tsukanov, I; Shapiro, V, Meshfree modeling and analysis of physical fields in heterogeneous media, Adv Comput Math, 23, 95-124, (2005) · Zbl 1137.76454 [180] Ventura, G, An augmented Lagrangian approach to essential boundary conditions in meshless methods, Int J Numer Methods Eng, 53, 825-842, (2002) [181] Vinci C (2009) Application of Dirichlet boundary conditions in the finite cell method. Master Thesis, Technische Universität München. · Zbl 1194.74518 [182] Šolín P, Segeth K, Doležel I (2004) Higher-order finite element methods. Chapman & Hall/CRC, London · Zbl 1032.65132 [183] Vuong, AV; Giannelli, C; Jüttler, B; Simeon, B, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput Methods Appl Mech Eng, 200, 3554-3567, (2011) · Zbl 1239.65013 [184] Wall, WA; Gamnitzer, P; Gerstenberger, A, Fluid-structure interaction approaches on fixed grids based on two different domain decomposition ideas, Int J Comput Fluid Dyn, 22, 411-427, (2008) · Zbl 1184.76732 [185] Wang, W; Zhang, Y; Scott, MA; Hughes, TJR, Converting an unstructured quadrilateral mesh to a standard T-spline surface, Comput Mech, 48, 477-498, (2011) · Zbl 1248.65024 [186] Wick T (2013) Fully Eulerian fluid-structure interaction for time-dependent problems. Comput Methods Appl Mech Eng 255:14-26 · Zbl 1297.74044 [187] Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin · Zbl 1153.74001 [188] Yang, Z; Kollmannsberger, S; Düster, A; Ruess, M; Garcia, EG; Burgkart, E; Rank, E, Non-standard bone simulation: interactive numerical analysis by computational steering, Comput Vis Sci, 14, 207-216, (2012) [189] Yang, Z; Ruess, M; Kollmannsberger, S; Düster, A; Rank, E, An efficient integration technique for the voxel-based finite cell method, Int J Numer Methods Eng, 91, 457-471, (2012) [190] Yosibash Z, Padan R, Joskowicz L, Milgrom C (2007) A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. ASME J Biomech Eng 129:297 · Zbl 0918.73222 [191] Yosibash, Z; Trabelsi, N; Milgrom, C, Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations, J Biomech, 40, 3688-3699, (2007) [192] Yserantant, H, On the multi-level splitting of finite element spaces, Numer Math, 49, 379-412, (1986) · Zbl 0608.65065 [193] Zander N (2011) The finite cell method for linear thermoelasticity. Master Thesis, Technische Universität München. [194] Zander N, Bog T, Elhaddad M, Espinoza R, Hu H, Joly AF, Wu C, Zerbe P, Düster A, Kollmannsberger S, Parvizian J, Ruess M, Schillinger D, Rank E (2014) FCMLab: a finite cell research toolbox for MATLAB. Advances in engineering software, submitted. [195] Zander, N; Kollmannsberger, S; Ruess, M; Yosibash, Z; Rank, E, The finite cell method for linear thermoelasticity, Comput Math Appl, 64, 3527-3541, (2012) · Zbl 1268.74020 [196] Zhang, L; Gerstenberger, A; Wang, X; Liu, WK, Immersed finite element method, Comput Methods Appl Mech Eng, 193, 2051-2067, (2004) · Zbl 1067.76576 [197] Zhang Y, Wang W, Hughes TJR (2012) Solid T-spline construction from boundary representations for genus-zero geometry. Comput Methods Appl Mech Eng 249-252:185-197 · Zbl 1348.65057 [198] Zhang, Y; Wang, W; Hughes, TJR, Conformal solid T-spline construction from boundary T-spline representations, Comput Mech, 51, 1051-1059, (2013) · Zbl 1367.65024 [199] Zhu, T; Atluri, SN, A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput Mech, 21, 211-222, (1998) · Zbl 0947.74080 [200] Zienkiewicz OC, Taylor RL (2005) The finite element method-solid mechanics, vol 2, 6th edn. Butterworth-Heinemann, London [201] Zienkiewicz OC, Taylor RL (2005) The finite element method-the basis, vol 1, 6th edn. Butterworth-Heinemann, London [202] Zohdi, TI; Wriggers, P, Aspects of the computational testing of the mechanical properties of microheterogeneous material samples, Int J Numer Methods Eng, 50, 2573-2599, (2001) · Zbl 1098.74721 [203] Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer, Berlin · Zbl 1143.74002 [204] Zorin D, Schröder P, DeRose T, Kobbelt L, Levin A, Sweldens W (2000) Subdivision for modeling and animation. Tech rep. · Zbl 0886.73061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.