×

zbMATH — the first resource for mathematics

An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. (English) Zbl 1348.65055
Summary: We explore hierarchical refinement of NURBS as a basis for adaptive isogeometric and immersed boundary analysis. We use the principle of B-spline subdivision to derive a local refinement procedure, which combines full analysis suitability of the basis with straightforward implementation in tree data structures and simple generalization to higher dimensions. We test hierarchical refinement of NURBS for some elementary fluid and structural analysis problems in two and three dimensions and attain good results in all cases. Using the B-spline version of the finite cell method, we illustrate the potential of immersed boundary methods as a seamless isogeometric design-through-analysis procedure for complex engineering parts defined by T-spline CAD surfaces, specifically a ship propeller and an automobile wheel. We show that hierarchical refinement considerably increases the flexibility of this approach by adaptively resolving local features.

MSC:
65D17 Computer-aided design (modeling of curves and surfaces)
65D07 Numerical computation using splines
PDF BibTeX Cite
Full Text: DOI
References:
[1] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. methods appl. mech. engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[2] Kagan, P.; Fischer, A., Integrated mechanically based CAE system using B-spline finite elements, Comput. aided des., 32, 8-9, 539-552, (2000) · Zbl 1206.65050
[3] Cohen, E.; Martin, T.; Kirby, R.M.; Lyche, T.; Riesenfeld, R., Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis, Comput. methods appl. mech. engrg., 199, 335-356, (2010) · Zbl 1227.74109
[4] Schmidt, R.; Kiendl, J.; Bletzinger, K.U.; Wüchner, R., Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis, Comput. vis. sci., 13, 7, 315-330, (2010) · Zbl 1216.65019
[5] Cottrell, J.A.; Hughes, T.J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley New York · Zbl 1378.65009
[6] Evans, J.A.; Bazilevs, Y.; Babuška, I.; Hughes, T.J.R., n-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. methods appl. mech. engrg., 198, 21-26, 1726-1741, (2009) · Zbl 1227.65093
[7] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. methods appl. mech. engrg., 195, 5257-5296, (2006) · Zbl 1119.74024
[8] Elguedj, T.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R., \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. methods appl. mech. engrg., 197, 2732-2762, (2008) · Zbl 1194.74518
[9] Auricchio, F.; da Veiga, L.B.; Lovadina, C.; Reali, A., The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMS versus NURBS-based approximations, Comput. methods appl. mech. engrg., 199, 314-323, (2010) · Zbl 1227.74061
[10] Taylor, R.L., Isogeometric analysis of nearly incompressible solids, Int. J. numer. methods engrg., 87, 1-5, 273-288, (2011) · Zbl 1242.74168
[11] Kiendl, J.; Bletzinger, K.U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with kirchhoff – love elements, Comput. methods appl. mech. engrg., 198, 49-52, 3902-3914, (2009) · Zbl 1231.74422
[12] Benson, D.J.; Bazilevs, Y.; Hsu, M.C.; Hughes, T.J.R., Isogeometric shell analysis: the reissner – mindlin shell, Comput. methods appl. mech. engrg., 199, 276-289, (2010) · Zbl 1227.74107
[13] Echter, R.; Bischoff, M., Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. methods appl. mech. engrg., 199, 374-382, (2010) · Zbl 1227.74068
[14] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid – structure interaction: theory, algorithms and computations, Comput. mech., 43, 3-37, (2008) · Zbl 1169.74015
[15] Bazilevs, Y.; Hsu, M.C.; Kiendl, J.; Wuechner, R.; Bletzinger, K.U., 3D simulation of wind turbine rotors at full scale. part II: fluid – structure interaction, Int. J. numer. methods fluids, 65, 236-253, (2011) · Zbl 1428.76087
[16] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. methods appl. mech. engrg., 197, 173-201, (2007) · Zbl 1169.76352
[17] Akkerman, I.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. mech., 41, 371-378, (2008) · Zbl 1162.76355
[18] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent taylor – couette flow using isogeometric analysis and residual-based variational multiscale method, J. comput. phys., 229, 3402-3414, (2010) · Zbl 1290.76037
[19] Gomez, H.; Calo, V.M.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of the cahn – hilliard phase-field model, Comput. methods appl. mech. engrg., 197, 4333-4352, (2008) · Zbl 1194.74524
[20] Borden, M.J.; Verhoosel, C.V.; Scott, M.A.; Hughes, T.J.R.; Landis, C.M., A phase-field description of dynamic brittle fracture, Comput. methods appl. mech. engrg., 217-220, 77-95, (2012) · Zbl 1253.74089
[21] Temizer, I.; Wriggers, P.; Hughes, T.J.R., Contact treatment in isogeometric analysis with NURBS, Comput. methods appl. mech. engrg., 200, 1100-1112, (2011) · Zbl 1225.74126
[22] I. Temizer, P. Wriggers, T.J.R. Hughes, Three-Dimensional Mortar-Based Frictional Contact Treatment in Isogeometric Analysis with NURBS, ICES Report 11-16, The University of Texas at Austin, May 2011. · Zbl 1243.74130
[23] C.V. Verhoosel, M.A. Scott, M.J. Borden, T.J.R. Hughes, R. de Borst, Discretization of Higher-Order Gradient Damage Models Using Isogeometric Finite Elements, ICES Report 11-12, The University of Texas at Austin, May 2011.
[24] Wall, W.A.; Frenzel, M.A.; Cyron, C., Isogeometric structural shape optimization, Comput. methods appl. mech. engrg., 197, 2976-2988, (2008) · Zbl 1194.74263
[25] L. Dedè, M.J. Borden, T.J.R. Hughes, Isogeometric Analysis for Topology Optimization with a Phase Field Model, ICES Report 11-29, The University of Texas at Austin, September 2011.
[26] Borden, M.J.; Scott, M.A.; Evans, J.A.; Hughes, T.J.R., Isogeometric finite element data structures based on Bézier extraction of NURBS, Int. J. numer. methods engrg., 87, 15-47, (2011) · Zbl 1242.74097
[27] Scott, M.A.; Borden, M.J.; Verhoosel, C.V.; Sederberg, T.W.; Hughes, T.J.R., Isogeometric finite element data structures based on Bézier extraction of T-splines, Int. J. numer. methods engrg., 88, 126-156, (2011) · Zbl 1242.65243
[28] Sederberg, T.W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-nurccss, ACM trans. graph., 22, 3, 477-484, (2003)
[29] Sederberg, T.W.; Cardon, D.L.; Finnigan, G.T.; North, N.S.; Zheng, J.; Lyche, T., T-spline simplification and local refinement, ACM trans. graph., 23, 3, 276-283, (2004)
[30] M.A. Scott, X. Li, T.W. Sederberg, T.J.R. Hughes, Local Refinement of Analysis-Suitable T-splines, ICES Report 11-06, The University of Texas at Austin, March 2011. · Zbl 1243.65030
[31] Forsey, D.; Bartels, R.H., Hierarchical B-spline refinement, Comput. graph., 22, 4, 205-212, (1988), (SIGGRAPH ’88 Proceedings)
[32] Forsey, D.; Bartels, R.H., Surface Fitting with hierarchical B-splines, ACM trans. graph., 14, 2, 134-161, (1995)
[33] Kraft, R., Adaptive and linearly independent multilevel B-splines, (), 209-218 · Zbl 0937.65014
[34] Höllig, K.; Reif, U.; Wipper, J., Weighted extended B-spline approximation of Dirichlet problems, SIAM J. numer. anal., 39, 442-462, (2001) · Zbl 0996.65119
[35] Höllig, K., Finite element methods with B-splines, (2003), Society for Industrial and Applied Mathematics Philadelphia · Zbl 1020.65085
[36] Schillinger, D.; Rank, E., An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput. methods appl. mech. engrg., 200, 47-48, 3358-3380, (2011) · Zbl 1230.74197
[37] Vuong, A.V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. methods appl. mech. engrg., 200, 49-52, 3554-3567, (2011) · Zbl 1239.65013
[38] D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, W. Sweldens, Subdivision for Modeling and Animation, SIGGRAPH Course Notes, 2000.
[39] Warren, J.; Weimer, H., Subdivision methods for geometric design, (2002), Morgan Kaufmann Publishers San Francisco
[40] Samet, H., Foundations of multidimensional and metric data structures, (2006), Morgan Kaufmann Publishers San Francisco · Zbl 1139.68022
[41] Burstedde, C.; Wilcox, L.C.; Ghattas, O., P4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. sci. comput., 33, 3, 1103-1133, (2011) · Zbl 1230.65106
[42] Bangerth, W.; Burstedde, C.; Heister, T.; Kronbichler, M., Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM trans. math. softw., 38, 2, 14, (2011) · Zbl 1365.65247
[43] Yserantant, H., On the multi-level splitting of finite element spaces, Numer. math., 49, 379-412, (1986)
[44] Grinspun, E.; Krysl, P.; Schröder, P., CHARMS: a simple framework for adaptive simulation, ACM trans. graph., 21, 3, 281-290, (2002) · Zbl 1396.65043
[45] Krysl, P.; Grinspun, E.; Schröder, P., Natural hierarchical refinement for finite element methods, Int. J. numer. methods engrg., 56, 1109-1124, (2003) · Zbl 1078.74660
[46] Bungartz, H.J.; Griebel, M., Sparse grids, Acta numer., 13, 147-269, (2004) · Zbl 1118.65388
[47] X. Li, J. Zheng, T.W. Sederberg, T.J.R. Hughes, M.A. Scott, On Linear Independence of T-splines, ICES Report 10-40, The University of Texas at Austin, October 2010.
[48] X. Li, M. Scott, On the Nesting Behavior of T-splines, ICES Report 11-13, The University of Texas at Austin, May 2011.
[49] Deng, J.; Chen, F.; Li, X.; Hu, C.; Tong, W.; Yang, Z.; Feng, Y., Polynomial splines over hierarchical T-meshes, Graph. models, 70, 76-86, (2008)
[50] Li, X.; Deng, J.; Chen, F., Polynomial splines over general T-meshes, Vis. comput., 26, 277-286, (2010)
[51] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S.P.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. methods appl. mech. engrg., 200, 21-22, 1892-1908, (2011) · Zbl 1228.74091
[52] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K.U.; Bazilevs, Y.; Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. methods appl. mech. engrg., 200, 47-48, 3310-3424, (2011) · Zbl 1230.74230
[53] Sederberg, T.W.; Finnigan, G.T.; Li, X.; Lin, H., Watertight trimmed NURBS, ACM trans. graph., 27, 1-79, (2008)
[54] Wang, W.; Zhang, Y.; Scott, M.A.; Hughes, T.J.R., Converting an unstructured quadrilateral mesh to a standard T-spline surface, Comput. mech., 48, 4, 477-498, (2011) · Zbl 1248.65024
[55] Y. Zhang, W. Wang, G. Xu, T.J.R. Hughes, Converting an Unstructured Quadrilateral/Hexahedral Mesh to a Rational T-spline, ICES Report 11-27, The University of Texas at Austin, August 2011. · Zbl 1312.65197
[56] Y. Zhang, W. Wang, T.J.R. Hughes, Solid T-spline Construction from Boundary Representations for Genus-Zero Geometry, ICES Report 11-50, The University of Texas at Austin, November 2011. · Zbl 1348.65057
[57] Li, Z.; Ito, K., The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains, (2006), Society for Industrial and Applied Mathematics Philadelphia
[58] Parvizian, J.; Düster, A.; Rank, E., Finite cell method: h- and p-extension for embedded domain methods in solid mechanics, Comput. mech., 41, 122-133, (2007) · Zbl 1162.74506
[59] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. methods appl. mech. engrg., 197, 3768-3782, (2008) · Zbl 1194.74517
[60] Schillinger, D.; Ruess, M.; Zander, N.; Bazilevs, Y.; Düster, A.; Rank, E., Small and large deformation analysis with the p- and B-spline versions of the finite cell method, Comput. mech., (2012) · Zbl 1398.74401
[61] Rank, E.; Kollmannsberger, S.; Sorger, C.; Düster, A., Shell finite cell method: a high order fictitious domain approach for thin-walled structures, Comput. methods appl. mech. engrg., 200, 3200-3209, (2011) · Zbl 1230.74232
[62] E. Rank, M. Ruess, S. Kollmannsberger, D. Schillinger, A. Düster, Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Engrg., submitted for publication. · Zbl 1348.74340
[63] Piegl, L.A.; Tiller, W., The NURBS book (monographs in visual communication), (1997), Springer New York
[64] Rogers, D.F., An introduction to NURBS with historical perspective, (2001), Morgan Kaufmann Publishers San Francisco
[65] Farin, G., Curves and surfaces for CAGD, (2002), Morgan Kaufmann Publishers San Francisco
[66] Rhino, CAD Modeling and Design Toolkit. <www.rhino3d.com> (24.10.11).
[67] Chui, C.K., An introduction to wavelets, (1992), Academic Press London · Zbl 0925.42016
[68] Peters, J.; Reif, U., Subdivision surfaces, (2008), Springer Heidelberg · Zbl 1148.65014
[69] Sabin, M., Analysis and design of univariate subdivision schemes, (2010), Springer Heidelberg · Zbl 1215.68002
[70] Rank, E., Adaptive remeshing and h-p domain decomposition, Comput. methods appl. mech. engrg., 101, 299-313, (1992) · Zbl 0782.65145
[71] Schillinger, D.; Düster, A.; Rank, E., The hp-d adaptive finite cell method for geometrically nonlinear problems of solid mechanics, Int. J. numer. methods engrg., 89, 9, 1171-1202, (2012) · Zbl 1242.74161
[72] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, Comput. methods appl. mech. engrg., 142, 1-88, (1997) · Zbl 0895.76040
[73] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, () · Zbl 0991.74002
[74] Donea, J.; Huerta, A., Finite element methods for flow problems, (2003), Wiley Chichester
[75] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[76] Zhu, T.; Atluri, S.N., A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput. mech., 21, 211-222, (1998) · Zbl 0947.74080
[77] Fernandez-Mendez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput. methods appl. mech. engrg., 193, 1257-1275, (2004) · Zbl 1060.74665
[78] Golub, G.; Van Loan, C.F., Matrix computations, (1996), Johns Hopkins University Press Baltimore · Zbl 0865.65009
[79] Bazilevs, Y.; Hughes, T.J.R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. fluids, 36, 12-26, (2007) · Zbl 1115.76040
[80] Embar, A.; Dolbow, J.; Harari, I., Imposing Dirichlet boundary conditions with nitsche’s method and spline-based finite elements, Int. J. numer. methods engrg., 83, 877-898, (2010) · Zbl 1197.74178
[81] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput. methods appl. mech. engrg., 191, 537-552, (2002) · Zbl 1035.65125
[82] J.A. Evans, T.J.R. Hughes, Explicit Trace Inequalities for Isogeometric Analysis and Parametric Finite Elements, ICES Report 11-17, The University of Texas at Austin, May 2011.
[83] Govindjee, S.; Strain, J.; Mitchell, T.J.; Taylor, R., Convergence of an efficient least-squares Fitting method for bases with compact support, Comput. methods appl. mech. engrg., 213-216, 84-92, (2012) · Zbl 1243.65028
[84] Mundani, R.P.; Bungartz, H.J.; Rank, E.; Niggl, A.; Romberg, R., Extending the p-version of finite elements by an octree-based hierarchy, (), 699-706
[85] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. rev. fluid mech., 37, 239-261, (2005) · Zbl 1117.76049
[86] W. Chen, Y. Cai, J. Zheng, Generalized hierarchical NURBS for interactive shape modification, in: Proceedings of the 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, 2008.
[87] W. Chen, Y. Cai, J. Zheng, Freeform-based form feature modeling using a hierarchical and multi-resolution NURBS method, in: Proceedings of the 9th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, 2010.
[88] Trilinos Version 10.6. Sandia National Laboratories, Los Alamos, NM. <http://trilinos.sandia.gov/>, 2011.
[89] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Evans, J.A.; Hughes, T.J.R.; Lipton, S.; Scott, M.A.; Sederberg, T.W., Isogeometric analysis using T-splines, Comput. methods appl. mech. engrg., 199, 229-263, (2010) · Zbl 1227.74123
[90] Dörfel, M.R.; Simeon, B.; Jüttler, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. methods appl. mech. engrg., 199, 264-275, (2010) · Zbl 1227.74125
[91] Carey, G.F.; Utku, M., Stream function finite element solution of Stokes flow with penalties, Int. J. numer. methods fluids, 4, 1013-1025, (1984) · Zbl 0549.76027
[92] Ghia, U.; Ghia, K.N.; Shin, C.T., High-re solutions for incompressible flow using the navier – stokes equations and a multigrid method, J. comput. phys., 48, 387-411, (1982) · Zbl 0511.76031
[93] Sueli, E.; Mayers, D.F., An introduction to numerical analysis, (2003), Cambridge University Press Cambridge
[94] MacNeal, R.H.; Harder, R.L., A proposed standard set of problems to test finite element accuracy, Finite elem. anal. des., 1, 3-20, (1985)
[95] Belytschko, T.; Stolarski, H.; Liu, W.K.; Carpenter, N.; Ong, J.S.J., Stress projection for membrane and shear locking in shell finite elements, Comput. methods appl. mech. engrg., 51, 221-258, (1985) · Zbl 0581.73091
[96] Rank, E.; Düster, A.; Nübel, V.; Preusch, K.; Bruhns, O.T., High order finite elements for shells, Comput. methods appl. mech. engrg., 194, 2494-2512, (2005) · Zbl 1082.74056
[97] Bischoff, M.; Wall, W.A.; Bletzinger, K.-U.; Ramm, E., Models and finite elements for thin-walled structures, ()
[98] Löhner, R.; Cebral, R.J.; Camelli, F.E.; Appanaboyinaa, S.; Baum, J.D.; Mestreau, E.L.; Soto, O.A., Adaptive embedded and immersed unstructured grid techniques, Comput. methods appl. mech. engrg., 197, 2173-2197, (2008) · Zbl 1158.76408
[99] Peskin, C., The immersed boundary method, Acta numer., 11, 1-39, (2002)
[100] Glowinski, R.; Kuznetsov, Y., Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems, Comput. methods appl. mech. engrg., 196, 1498-1506, (2007) · Zbl 1173.65369
[101] Ramière, I.; Angot, P.; Belliard, M., A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. methods appl. mech. engrg., 196, 766-781, (2007) · Zbl 1121.65364
[102] Dolbow, J.; Harari, I., An efficient finite element method for embedded interface problems, Int. J. numer. methods engrg., 78, 229-252, (2009) · Zbl 1183.76803
[103] Gerstenberger, A.; Wall, W.A., An embedded Dirichlet formulation for 3D continua, Int. J. numer. methods engrg., 82, 537-563, (2010) · Zbl 1188.74056
[104] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. methods appl. mech. engrg., 199, 2680-2686, (2010) · Zbl 1231.65207
[105] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. numer. math., (2011)
[106] Sanches, R.; Bornemann, P.; Cirak, F., Immersed B-spline (I-spline) finite element method for geometrically complex domains, Comput. methods appl. mech. engrg., 200, 1432-1445, (2011) · Zbl 1228.74097
[107] Rüberg, T.; Cirak, F., Subdivision-stabilised immersed B-spline finite elements for moving boundary flows, Comput. methods appl. mech. engrg., 209-212, 266-283, (2012) · Zbl 1243.76031
[108] D. Schillinger, S. Kollmannsberger, R.-P. Mundani, E. Rank, The finite cell method for geometrically nonlinear problems of solid mechanics, in: IOP Conference Series: Material Science and Engineering, vol. 10, 2010, p. 012170.
[109] Sadd, M.H., Elasticity, theory, applications, and numerics, (2009), Academic Press Oxford
[110] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover New York
[111] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, () · Zbl 0991.74002
[112] T-Splines, Inc. Surface Modeling Software Based on T-splines. <www.tsplines.com> (24.09.11).
[113] Bungartz, H.J.; Griebel, M.; Zenger, C., Introduction to computer graphics, (2004), Charles River Media Hingham
[114] Common Versatile Multi-purpose Library for C++, Developed at the University of Geneva. <http://tech.unige.ch/cvmlcpp/> (13.10.11).
[115] de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M., Computational geometry: algorithms and applications, (2008), Springer Heidelberg · Zbl 1140.68069
[116] Bindick, S.; Stiebler, M.; Krafczyk, M., Fast kd-tree-based hierarchical radiosity for radiative heat transport problem, Int. J. numer. methods engrg., 86, 1082-1100, (2011) · Zbl 1235.80043
[117] ARPACK, Software for the Solution of Large Scale Eigenvalue Problems Developed by R. Lehouq, D. Sorensen, K. Maschhoff, C. Yang. <http://www.caam.rice.edu/software/ARPACK/> (11.10.11).
[118] MKL Pardiso, Direct Solver Contained in Intel’s MKL Library. <www.intel.com/software/products/mkl> (16.01.12).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.