×

zbMATH — the first resource for mathematics

Integrated conditional moment test for partially linear single index models incorporating dimension-reduction. (English) Zbl 1348.62141
Summary: Studying model checking problems for partially linear single-index models, we propose a variant of the integrated conditional moment test using a linear projection weighting function, which gains dimension reduction and makes the proposed method act as if there exists only one covariate even in the presence of multiple dimensional regressors. We derive asymptotic distributions of the proposed test; i.e., an integral of a centered Gaussian process under the null hypothesis and an integral of a non-centered one under Pitman local alternatives. We also suggest a consistent bootstrap procedure for calculating the critical values. Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analyzed for an illustration.

MSC:
62G08 Nonparametric regression and quantile regression
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
62J02 General nonlinear regression
62G09 Nonparametric statistical resampling methods
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Beran, R. and Millar, P. W. (1989). A stochastic minimum distance test for multivariate parametric models, The Annals of Statistics 17 : 125-140. · Zbl 0684.62041 · doi:10.1214/aos/1176347006
[2] Bierens, H. J. (1982). Consistent model specification tests, Journal of Econometrics 20 : 105-134. · Zbl 0549.62076 · doi:10.1016/0304-4076(82)90105-1
[3] Bierens, H. J. and Ploberger, W. (1997). Asymptotic theory of integrated conditional moment tests, Econometrica 65 : 1129-1151. · Zbl 0927.62085 · doi:10.2307/2171881
[4] Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-index models, Journal of the American Statistical Association 92 : 477-489. · Zbl 0890.62053 · doi:10.2307/2965697
[5] Carroll, R., Ruppert, D. and Welsh, A. (1998). Local estimating equations, Journal of the American Statistical Association 93 : 214-227. · Zbl 0910.62033 · doi:10.2307/2669618
[6] Cui, X., Härdle, W. and Zhu, L.-X. (2011). The EFM approach for single-index models, The Annals of Statistics 39 : 1658-1688. · Zbl 1221.62062 · doi:10.1214/10-AOS871
[7] Dette, H. (1999). A consistent test for the functional form of a regression based on a difference of variance estimators, The Annals of Statistics 27 : 1012-1040. · Zbl 0957.62036 · doi:10.1214/aos/1018031266
[8] Escanciano, J. C. (2006). A consistent diagnostic test for regression models using projections, Econometric Theory 22 : 1030-1051. · Zbl 1170.62318 · doi:10.1017/S0266466606060506
[9] Eubank, R. L. and Hart, J. D. (1992). Testing goodness-of-fit in regression via order selection criteria, The Annals of Statistics 20 : 1412-1425. · Zbl 0776.62045 · doi:10.1214/aos/1176348775
[10] Fan, J. (1992). Design-adaptive nonparametric regression, Journal of the American Statistical Association 87 : 998-1004. · Zbl 0850.62354 · doi:10.1080/01621459.1992.10476255
[11] Härdle, W., Hall, P. and Ichimura, H. (1993). Optimal smoothing in single-index models, The Annals of Statistics 21 : 157-178. · Zbl 0770.62049 · doi:10.1214/aos/1176349020
[12] Härdle, W. and Mammen, E. (1993). Testing parametric versus nonparametric regression, The Annals of Statistics 21 : 1926-1947. · Zbl 0795.62036 · doi:10.1214/aos/1176349403
[13] Härdle, W., Mammen, E. and Müller, M. (1998). Testing parametric versus semiparametric modeling in generalized linear models, Journal of the American Statistical Association 93 : 1461-1474. · Zbl 1064.62543 · doi:10.2307/2670060
[14] Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004)., Nonparametric and Semiparametric Models , Springer-Verlag, New York. · Zbl 1059.62032
[15] Hart, J. (1997)., Nonparametric Smoothing and Lack of Fit Tests , Springer, New York. · Zbl 0886.62043
[16] Horowitz, J. L. (2009)., Semiparametric and Nonparametric Methods in Econometrics , Springer, New York. · Zbl 1278.62005
[17] Horowitz, J. L. and Härdle, W. (1994). Testing a parametric model against a semiparametric alternative, Econometric Theory 10 : 821-848. · Zbl 04522850 · doi:10.1017/S0266466600008872
[18] Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models, Journal of Econometrics 58 : 71-120. · Zbl 0816.62079 · doi:10.1016/0304-4076(93)90114-K
[19] Johnson, R. W. (2003). Kiplinger’s personal finance, Journal of Statistics Education 57 : 104-123.
[20] Jones, L. K. (1987). On a conjecture of Huber concerning the convergence of projection pursuit regression, The Annals of Statistics 15 : 880-882. · Zbl 0664.62061 · doi:10.1214/aos/1176350382
[21] Lavergne, P. and Patilea, V. (2008). Breaking the curse of dimensionality in nonparametric testing, Journal of Econometrics 143 : 103-122. · Zbl 1418.62199 · doi:10.1016/j.jeconom.2007.08.014
[22] Lee, T.-H., White, H. and Granger, C. W. J. (2001). Testing for neglected nonlinearity in time series models: a comparison of neural network methods and alternative tests, Journal of Econometrics 56 : 208-229.
[23] Liang, H., Liu, X., Li, R. and Tsai, C. L. (2010). Estimation and testing for partially linear single-index models, The Annals of Statistics 38 : 3811-3836. · Zbl 1204.62068 · doi:10.1214/10-AOS835
[24] Lin, D. Y., Wei, L. J. and Ying, Z. (2002). Model-checking techniques based on cumulative residuals, Biometrics 58 : 1-12. · Zbl 1209.62168 · doi:10.1111/j.0006-341X.2002.00001.x
[25] Newey, W. K. (1985). Maximum likelihood specification testing and conditional moment tests, Econometrica 53 : 1047-1070. · Zbl 0629.62107 · doi:10.2307/1911011
[26] Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression, The Annals of Statistics 22 (3): 1346-1370. · Zbl 0821.62020 · doi:10.1214/aos/1176325632
[27] Stute, W. (1997). Nonparametric model checks for regression, The Annals of Statistics 25 : 613-641. · Zbl 0926.62035 · doi:10.1214/aos/1031833666
[28] Stute, W. and Zhu, L.-X. (2002). Model checks for generalized linear models, Scandinavian Journal of Statistics 29 : 535-545. · Zbl 1035.62073 · doi:10.1111/1467-9469.00304
[29] Stute, W. and Zhu, L.-X. (2005). Nonparametric checks for single-index models, The Annals of Statistics 33 : 1048-1083. · Zbl 1080.62023 · doi:10.1214/009053605000000020
[30] van der Vaart, A. W. and Wellner, J. A. (1996)., Weak Convergence And Empirical Processes , Springer Series in Statistics, Springer-Verlag, New York. · Zbl 0862.60002
[31] Wang, J.-L., Xue, L., Zhu, L. and Chong, Y. S. (2010). Estimation for a partial-linear single-index model, The Annals of Statistics 38 : 246-274. · Zbl 1181.62038 · doi:10.1214/09-AOS712
[32] White, H. (1984)., Asymptotic Theory for Econometricians , Academic Press, New York.
[33] Xia, Y. C. and Härdle, W. (2006). Semi-parametric estimation of partially linear single-index models, Journal of Multivariate Analysis 97 : 1162-1184. · Zbl 1089.62050 · doi:10.1016/j.jmva.2005.11.005
[34] Xia, Y., Li, W. K., Tong, H. and Zhang, D. (2004). A goodness-of-fit test for single-index models, Statistica Sinica 14 : 1-39. · Zbl 1040.62034
[35] Xia, Y., Tong, H., Li, W. K. and Zhu, L.-X. (2002). An adaptive estimation of dimension reduction space, Journal of the Royal Statistical Society, Series B 64 : 363-410. · Zbl 1091.62028 · doi:10.1111/1467-9868.03411
[36] Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index models, Journal of the American Statistical Association 97 : 1042-1054. · Zbl 1045.62035 · doi:10.1198/016214502388618861
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.