zbMATH — the first resource for mathematics

From loop clusters and random interlacements to the free field. (English) Zbl 1348.60141
Let \({\mathcal G}=(V,E)\) be a connected undirected graph, with each vertex of a finite degree. It is assumed that to each edge \(e\in E\) a positive conductance \(C(e)\) is prescribed, while the vertices are endowed with a nonnegative killing measure \(k(x), x\in V\). Accordingly, a continuous-time Markovian jump process \(X_t,\;0\leq t<\zeta \), on \({\mathcal G}\) is defined, such that the transition rate from \(x\) to \(y,\) \(x\sim y\), equals \(C(x,y)\) and the transition rate from \(x\in V\) to a cemetery point outside \(V\) is equal to \(k(x).\) The process may blow up at a finite time, so that \(\zeta\) is either \(+\infty\) or the first time \(X_t\) gets killed or blows up. Next, for \(\alpha>0\) a Poisson point process \({\mathcal L}_\alpha\) with intensity \(\alpha\mu\) is defined, where \(\mu\) is a loop measure on the set of loops on \({\mathcal G}\). As a consequence of the coupling scheme constructed for the above model, the author proves that \({\mathcal L}_{1/2}\) does not percolate.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G15 Gaussian processes
60G60 Random fields
60J75 Jump processes (MSC2010)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
05C90 Applications of graph theory
Full Text: DOI Euclid
[1] Baxter, J. R. and Chacon, R. V. (1984). The equivalence of diffusions on networks to Brownian motion. In Conference in Modern Analysis and Probability ( New Haven , Conn. , 1982). Contemp. Math. 26 33-48. Amer. Math. Soc., Providence, RI. · Zbl 0546.60080
[2] Bricmont, J., Lebowitz, J. L. and Maes, C. (1987). Percolation in strongly correlated systems: The massless Gaussian field. J. Stat. Phys. 48 1249-1268. · Zbl 0962.82520
[3] Chang, Y. and Sapozhnikov, A. (2014). Phase transition in loop percolation. Preprint. Available at . arXiv:1403.5687 · Zbl 1341.60123
[4] Dynkin, E. B. (1984). Gaussian and non-Gaussian random fields associated with Markov processes. J. Funct. Anal. 55 344-376. · Zbl 0533.60061
[5] Dynkin, E. B. (1984). Local times and quantum fields. In Seminar on Stochastic Processes , 1983 ( Gainesville , Fla. , 1983). Progr. Probab. Statist. 7 69-83. Birkhäuser, Boston, MA.
[6] Enriquez, N. and Kifer, Y. (2001). Markov chains on graphs and Brownian motion. J. Theoret. Probab. 14 495-510. · Zbl 0993.60043
[7] Fitzsimmons, P. J. and Rosen, J. S. (2014). Markovian loop soups: Permanental processes and isomorphism theorems. Electron. J. Probab. 19 1-30. · Zbl 1312.60091
[8] Folz, M. (2014). Volume growth and stochastic completeness of graphs. Trans. Amer. Math. Soc. 366 2089-2119. · Zbl 1325.60069
[9] Gandolfi, A., Keane, M. S. and Newman, C. M. (1992). Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Related Fields 92 511-527. · Zbl 0767.60098
[10] Grimmett, G. (1999). Percolation , 2nd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 321 . Springer, Berlin. · Zbl 0926.60004
[11] Häggström, O. and Jonasson, J. (2006). Uniqueness and non-uniqueness in percolation theory. Probab. Surv. 3 289-344. · Zbl 1189.60175
[12] Janson, S. (1984). Bounds on the distributions of extremal values of a scanning process. Stochastic Process. Appl. 18 313-328. · Zbl 0549.60066
[13] Le Jan, Y. (2011). Markov Paths , Loops and Fields. Lecture Notes in Math. 2026 . Springer, Heidelberg.
[14] Le Jan, Y. and Lemaire, S. (2013). Markovian loop clusters on graphs. Illinois J. Math. 57 525-558. · Zbl 1311.60015
[15] Le Jan, Y., Marcus, M. B. and Rosen, J. (2015). Permanental fields, loop soups and continuous additive functionals. Ann. Probab. 43 44-84. · Zbl 1316.60075
[16] Lupu, T. (2013). Poissonian ensembles of loops of one-dimensional diffusions. Preprint. Available at . arXiv:1302.3773
[17] Marcus, M. B. and Rosen, J. (2006). Markov Processes , Gaussian Processes , and Local Times. Cambridge Studies in Advanced Mathematics 100 . Cambridge Univ. Press, Cambridge. · Zbl 1129.60002
[18] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Springer, Berlin. · Zbl 0917.60006
[19] Rodriguez, P.-F. and Sznitman, A.-S. (2013). Phase transition and level-set percolation for the Gaussian free field. Comm. Math. Phys. 320 571-601. · Zbl 1269.82028
[20] Rozanov, Yu. A. (1982). Markov Random Fields . Springer, New York. · Zbl 0498.60057
[21] Sidoravicius, V. and Sznitman, A.-S. (2009). Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62 831-858. · Zbl 1168.60036
[22] Sznitman, A.-S. (2010). Vacant set of random interlacements and percolation. Ann. of Math. (2) 171 2039-2087. · Zbl 1202.60160
[23] Sznitman, A.-S. (2012). An isomorphism theorem for random interlacements. Electron. Commun. Probab. 17 1-9. · Zbl 1247.60135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.