×

zbMATH — the first resource for mathematics

Asymptotic performance of global denoising. (English) Zbl 1347.94010

MSC:
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
62G08 Nonparametric regression and quantile regression
93E14 Data smoothing in stochastic control theory
93E11 Filtering in stochastic control theory
15B51 Stochastic matrices
15B48 Positive matrices and their generalizations; cones of matrices
60J60 Diffusion processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. Ram, M. Elad, and I. Cohen, Image processing using smooth ordering of its patches, IEEE Trans. Image Process., 22 (2013), pp. 2764–2774. · Zbl 1373.94339
[2] M. Zontak, I. Mosseri, and M. Irani, Separating signal from noise using patch recurrence across scales, in IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1195–1202.
[3] H. Talebi and P. Milanfar, Global image denoising, IEEE Trans. Image Process., 23 (2014), pp. 755–768. · Zbl 1374.94365
[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse \(3\)-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080–2095.
[5] P. Chatterjee and P. Milanfar, Practical bounds on image denoising: From estimation to information, IEEE Trans. Image Process., 20 (2011), pp. 1221–1233. · Zbl 1372.94037
[6] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), pp. 379–423. · Zbl 1154.94303
[7] E. Ordentlich, G. Seroussi, S. Verdu, M. Weinberger, and T. Weissman, A discrete universal denoiser and its application to binary images, in Proceedings of the 2003 International Conference on Image Processing (ICIP 2003), 2003.
[8] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. Weinberger, A discrete universal denoiser and its application to binary images, IEEE Trans. Inform. Theory, 51 (2003), pp. 5–28.
[9] A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), pp. 490–530, http://dx.doi.org/10.1137/040616024. · Zbl 1108.94004
[10] A. Buades, B. Coll, and J. M. Morel, A non-local algorithm for image denoising, in IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp. 60–65.
[11] C. Kervrann and J. Boulanger, Optimal spatial adaptation for patch-based image denoising, IEEE Trans. Image Process., 15 (2006), pp. 2866–2878.
[12] P. Chatterjee and P. Milanfar, Clustering-based denoising with locally learned dictionaries, IEEE Trans. Image Process., 18 (2009), pp. 1438–1451. · Zbl 1371.94081
[13] I. Mosseri, M. Zontak, and M. Irani, Combining the power of internal and external denoising, in 2013 IEEE International Conference on Computational Photography, 2013, pp. 1–9.
[14] P. Milanfar, A tour of modern image filtering, IEEE Signal Process. Mag., 30 (2013), pp. 106–128.
[15] P. Milanfar, Symmetrizing smoothing filters, SIAM J. Imaging Sci., 6 (2013), pp. 263–284, http://dx.doi.org/10.1137/120875843. · Zbl 1370.62024
[16] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process., 12 (2003), pp. 1338–1351. · Zbl 1279.94028
[17] D. D. Muresan and T. W. Parks, Adaptive principal components and image denoising, in Proceedings of the 2003 International Conference on Image Processing (ICIP 2003), 2003, pp. 101–104.
[18] L. Zhang, W. Dong, D. Zhang, and G. Shi, Two-stage image denoising by principal component analysis with local pixel grouping, Pattern Recognition, 43 (2010), pp. 1531–1549. · Zbl 1191.68808
[19] M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), pp. 3736–3745.
[20] P. Chatterjee and P. Milanfar, Is denoising dead?, IEEE Trans. Image Process., 19 (2010), pp. 895–911. · Zbl 1371.94082
[21] H. Talebi and P. Milanfar, Global denoising is asymptotically optimal, in Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP 2014), 2014, pp. 818–822. · Zbl 1374.94365
[22] J. M. Steele, The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1060.26023
[23] K. Knopp, Infinite Sequences and Series, Dover, New York, 1956. · Zbl 0070.05807
[24] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, F. Warner, and S. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. Natl. Acad. Sci. USA, 102 (2005), pp. 7426–7431. · Zbl 1405.42043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.