×

zbMATH — the first resource for mathematics

Nested splitting conjugate gradient method for matrix equation \(AXB=C\) and preconditioning. (English) Zbl 1347.65078
Summary: In this paper, we present a nested splitting conjugate gradient (NSCG) iteration method for solving a class of matrix equations with nonsymmetric coefficient matrices. This method actually consists of inner/outer iterations, which employs a CG-like method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent and symmetric positive definite splitting of the coefficient matrices. Convergence conditions of this method are studied in depth and numerical experiments show the efficiency of this method. Moreover, we show that the use of the quasi-Hermitian splitting as a preconditioner can induce an accurate, robust and effective preconditioned Krylov subspace method.

MSC:
65F30 Other matrix algorithms (MSC2010)
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
15A24 Matrix equations and identities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baur, U.; Benner, P., Cross-Gramian based model reduction for data-sparse systems, Electron. Trans. Numer. Anal., 31, 256-270, (2008) · Zbl 1170.93315
[2] Bouhamidi, A.; Jbilou, K.; Reichel, L.; Sadok, H., An exterapolated TSVD method for linear discrete ill-posed problems with Kronecker structure, Linear Algebra Appl., 434, 1677-1688, (2011) · Zbl 1210.65091
[3] Calvetti, D.; Reichel, L., Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl., 17, 165-186, (1996) · Zbl 0849.65101
[4] Datta, B., Numerical methods for linear control systems, (2004), Elsevier Academic Press
[5] Bai, Z.-Z., On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations, J. Comput. Math., 29, 185-198, (2011) · Zbl 1249.65090
[6] Deng, Y.-B.; Bai, Z.-Z.; Gao, Y.-H., Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Numer. Linear Algebra Appl., 13, 801-823, (2006) · Zbl 1174.65382
[7] El Guennouni, A.; Jbilou, K.; Riquet, J., Block Krylov subspace methods for solving large Sylvester equation, Numer. Algorithms, 29, 75-96, (2002) · Zbl 0992.65040
[8] Liao, A.-P.; Bai, Z.-Z.; Lei, Y., Best approximate solution of matrix equation \(A X B + C Y D = E\), SIAM J. Matrix Anal. Appl., 27, 675-688, (2005) · Zbl 1096.15004
[9] Salkuyeh, D. K.; Toutounian, F., New approaches for solving large Sylvester equations, Appl. Math. Comput., 173, 9-18, (2006) · Zbl 1089.65038
[10] Salkuyeh, D. K., CG-type algorithms to solve symmetric matrix equations, Appl. Math. Comput., 172, 985-999, (2006) · Zbl 1104.65029
[11] Wang, M.; Feng, Y., An iterative algorithm for solving a class of matrix equations, J. Control Theory Appl., 7, 68-72, (2009)
[12] Xie, L.; Ding, J.; Ding, F., Gradient based iterative solutions for general linear matrix equations, Comput. Math. Appl., 58, 1441-1448, (2009) · Zbl 1189.65083
[13] Axelsson, O.; Bai, Z.-Z.; Qiu, S.-X., A class of nested iterative schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part, Numer. Algorithms, 35, 351-372, (2004) · Zbl 1054.65028
[14] Axelsson, O., Iterative solution methods, (1994), Cambridge University Press New York · Zbl 0795.65014
[15] Golub, G. H.; Van Loan, C., Matrix computations, (1996), The John Hopkins University Press Baltimore · Zbl 0865.65009
[16] Saad, Y., Itrative methods for large sparse linear systems, (2002), SIAM Philadelphia
[17] Bai, Z.-Z.; Zhang, S.-L., A regularized conjugate gradient method for symmetric positive definite system of linear equations, J. Comput. Math., 20, 437-448, (2002) · Zbl 1002.65040
[18] Golub, G. H.; Overton, M. L., The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems, Numer. Math., 53, 571-593, (1988) · Zbl 0661.65033
[19] Bai, Z.-Z.; Golub, G. H.; Ng, M. K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24, 603-626, (2003) · Zbl 1036.65032
[20] Bai, Z.-Z., Splitting iteration methods for non-Hermitian positive definite systems of linear equations, Hokkaido Math. J., 36, 801-814, (2007) · Zbl 1138.65027
[21] Horn, R. A.; Johnson, C. R., Topics in matrix analysis, (1991), Cambridge University Press Cambridge, UK · Zbl 0729.15001
[22] Lütkepohl, H., Handbook of matrices, (1996), John Wiley & Sons Press England · Zbl 0856.15001
[23] Kelley, C. T., (Iterative Methods for Linear and Nonlinear Equations, Frontiers in Applied Mathematics, vol. 16, (1995), SIAM Philadelphia) · Zbl 0832.65046
[24] Wang, C.-L.; Bai, Z.-Z., Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices, Linear Algebra Appl., 330, 215-218, (2001) · Zbl 0983.65044
[25] Wang, L.; Bai, Z.-Z., Convergence conditions for splitting iteration methods for non-Hermitian linear systems, Linear Algebra Appl., 428, 453-468, (2008) · Zbl 1135.65018
[26] Bai, Z.-Z.; Yin, J.-F.; Su, Y.-F., A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24, 539-552, (2006) · Zbl 1120.65054
[27] Duff, I. S.; Grimes, R. G.; Lewis, J. G., User’s guide for the harwell-boeing sparse matrix collection, technical report RAL-92-086, (1992), Rutherford Applton Laboratory, Chilton, UK
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.