×

zbMATH — the first resource for mathematics

CGALmesh: a generic framework for Delaunay mesh generation. (English) Zbl 1347.65047

MSC:
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65Y15 Packaged methods for numerical algorithms
PDF BibTeX Cite
Full Text: DOI
References:
[1] P. Alliez, D. Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Variational tetrahedral meshing. ACM Transactions on Graphics (SIGGRAPH) 24, 617–625.
[2] P. Alliez, L. Rineau, S. Tayeb, J. Tournois, and M. Yvinec. 2013a. 3D mesh generation. In CGAL User and Reference Manual. CGAL Editorial Board, 4.2 edition. Retrieved from http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.ht ml#Pkg:Mesh_3.
[3] P. Alliez, L. Saboret, and G. Guennebaud. 2013b. Surface reconstruction from point sets. In CGAL User and Reference Manual. CGAL Editorial Board, 4.2 edition.
[4] P. Alliez, S. Tayeb, and C. Wormser. 2013c. 3D fast intersection and distance computation (AABB Tree). In CGAL User and Reference Manual. CGAL Editorial Board, 4.2 edition. http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html#Pkg:AABB_tree.
[5] N. Amenta and M. Bern. 1998. Surface reconstruction by voronoi filtering. In Proceedings of the 14th Annual Symposium on Computational Geometry. 39–48. · Zbl 0939.68138
[6] J.-D. Boissonnat and S. Oudot. 2005. Provably good sampling and meshing of surfaces. Graphical Models 67, 405–451. · Zbl 1087.68114
[7] J.-D. Boissonnat, K.-L. Shi, J. Tournois, and M. Yvinec. 2015. Anisotropic Delaunay meshes of surfaces. ACM Transactions on Graphics 34, 2 (2015), 14:1–14:11. · Zbl 1380.65035
[8] J.-D. Boissonnat, C. Wormser, and M. Yvinec. 2008. Locally uniform anisotropic meshing. In Proceedings of the 24th Annual Symposium on Computational Geometry. 270–277. · Zbl 1271.65032
[9] C. Boivin and C. Ollivier-Gooch. 2002. Guaranteed-quality triangular mesh generation for domains with curved boundaries. International Journal on Numerical Methods Engineering 55, 1185–1213. · Zbl 1027.76041
[10] D. Boltcheva, M. Yvinec, and J.-D. Boissonnat. 2009. Mesh generation from 3D multi-material images. In Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science), Vol. 5762. 283–290.
[11] R. Campos, R. Garcia, P. Alliez, and M. Yvinec. 2013. Splats-based surface reconstruction from defect-laden point sets. Graphical Models 75, 6 (2013), 346–361.
[12] CGAL Editorial Board. Downloading CGAL. Retrieved from http://www.cgal.org/download.html.
[13] CGAL Editorial Board. CGAL, Computational Geometry Algorithms Library. http://www.cgal.org. · Zbl 1322.68279
[14] L. Chen and J. Xu. 2004. Optimal Delaunay triangulations. Journal on Computing and Mathematics 22, 2, 299–308. · Zbl 1048.65020
[15] S. W. Cheng, T. K. Dey, and J. Levine. 2007a. A practical Delaunay meshing algorithm for a large class of domains. In Proceedings of the 16th International Meshing Roundtable. 477–494. · Zbl 1136.65024
[16] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng. 2000. Sliver exudation. Journal of the ACM 47, 883–904. · Zbl 1320.68210
[17] S.-W. Cheng, T. K. Dey, and E. A. Ramos. 2007b. Delaunay refinement for piecewise smooth complexes. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. 1096–1105. · Zbl 1302.68279
[18] S.-W. Cheng, T. K. Dey, and J. R. Shewchuk. 2012. Delaunay Mesh Generation. CRC Press. · Zbl 1298.65187
[19] N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien, and J. R. Shewchuk. 2007. Liquid simulation on lattice-based tetrahedral meshes. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2007. 219–228.
[20] A. N. Chernikov and N. P. Chrisochoides. 2010. A template for developing next generation parallel Delaunay refinement methods. Finite Elements in Analysis and Design 46, 1–2, 96–113. DOI:http://dx.doi.org/10.1016/j.finel.2009.06.014 Mesh Generation - Applications and Adaptation.
[21] L. P. Chew. 1993. Guaranteed-quality mesh generation for curved surfaces. In Proceedings of the 9th Annual Symposium on Computational Geometry (SCG’93). ACM New York, NY, 274–280.
[22] L. P. Chew. 1989. Guaranteed-Quality Triangular Meshes. Technical Report TR-89-983. Department of Computer Science, Cornell University, Ithaca, NY.
[23] D. Cohen-Steiner and J.-M. Morvan. 2003. Restricted Delaunay triangulations and normal cycle. In Proceedings of the 19th Annual Symposium on Computational Geometry. 237–246. · Zbl 1422.65051
[24] T. K. Dey. 2007a. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Vol. 23. Cambridge University Press. · Zbl 1115.65014
[25] T. K. Dey. 2007b. Delaunay mesh generation of three dimensional domains. Tessellations in the Sciences: Virtues, Techniques and Applications of Geometric Tilings, R. van de Weygaert, G. Vegter, J. Ritzerveld, and V. Icke (Eds.). Springer-Verlag, Berlin.
[26] T. K. Dey, F. Janoos, and J. A. Levine. 2012. Meshing interfaces of multi-label data with Delaunay refinement. Engineering with Computers 28, 1, 71–82.
[27] T. K. Dey and J. A. Levine. 2009. Delaunay meshing of piecewise smooth complexes without expensive predicates. Algorithms 2, 4 (Nov. 2009), 1327–1349. · Zbl 1445.65006
[28] T. K. Dey, J. A. Levine, and A. Slatton. 2010. Localized Delaunay refinement for sampling and meshing. Computer Graphics Forum (Special Issue of Eurographics SGP) 29, 5, 1723–1732.
[29] Q. Du, V. Faber, and M. Gunzburger. 1999. Centroidal Voronoi tesselations: Applications and algorithms. SIAM Review 41, 637–676. · Zbl 0983.65021
[30] Q. Du and D. Wang. 2003. Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. International Journal of Numerical Methods Engineering 56, 9, 1355–1373. DOI:http://dx.doi.org/10.1002/nme.616 · Zbl 1106.74431
[31] L. A. Freitag and P. Plassmann. 2000. Local optimization-based simplicial mesh untangling and improvement. International Journal of Numerical Methods Engineering 49, 1–2, 109–125. DOI:http://dx.doi.org/10.1002/1097-0207(20000910/20)49:1/2<109::AID-NME925>3.0.CO;2-U · Zbl 0962.65098
[32] P. J. Frey and P.-L. George. 2007. Mesh Generation: Application to Finite Elements. ISTE.
[33] P.-L. George. 2005. Tetmesh-GHS3D, Tetrahedral Mesh Generator. INRIA - Simulog-Technologies.
[34] S. Gosselin and C. Ollivier-Gooch. 2011. Constructing constrained Delaunay tetrahedralizations of volumes bounded by piecewise smooth surfaces. International Journal of Computational Geometry & Applications 21, 5, 571–594. · Zbl 1236.68279
[35] B. M. Klingner and J. R. Shewchuk. 2008. Aggressive tetrahedral mesh improvement. In Proceedings of the 16th International Meshing Roundtable. 3–23. · Zbl 1238.65011
[36] F. Labelle and J. R. Shewchuk. 2007. Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM Transactions on Graphics 26, 3, Article 57 (July 2007), 57.1–57.10 pages. DOI:http://dx.doi.org/10.1145/1276377.1276448 · Zbl 05457725
[37] X. Y. Li. 2000. Spacing control and sliver-free Delaunay mesh. In Proceedings of the 9th International Meshing Round Table.
[38] W. E. Lorensen and H. E. Cline. 1998. Marching cubes: a high resolution 3D surface construction algorithm. In Seminal Graphics. ACM, New York, NY. 347–353. DOI:http://dx.doi.org/10.1145/280811.281026
[39] D. L. Marcum. 1998. Advancing-front/local-reconnection (aflr) unstructured grid generation. Computational Fluid Dynamics Review 1, 140–157. http://www.worldscientific.com/doi/pdf/10.1142/9789812812957_0008.
[40] P. Mullen, F. de Goes, M. Desbrun, D. Cohen-Steiner, and P. Alliez. 2010. Signing the unsigned: Robust surface reconstruction from raw pointsets. Computer Graphics Forum 29, 1733–1741. Special issue 7th Annual Symposium on Geometry Processing.
[41] D. Nave, N. Chrisochoides, and L. P. Chew. 2004. Guaranteed-quality parallel Delaunay refinement for restricted polyhedral domains. Computational Geometry Theory Applications 28, 2–3, 191–215. DOI:http://dx.doi.org/10.1016/j.comgeo.2004.03.009 · Zbl 1059.65022
[42] C. Ollivier-Gooch. 2010. GRUMMP User Guide. Department of Mechanical Engineering, University of British Columbia.
[43] S. Oudot, L. Rineau, and M. Yvinec. 2005. Meshing volumes bounded by smooth surfaces. In Proceedings of the 14th International Meshing Roundtable. 203–219.
[44] J. Park and S. M. Shontz. 2010. Two derivative-free optimization algorithms for mesh quality improvement. Procedia Computer Science 1, 1, 387–396. DOI:http://dx.doi.org/10.1016/j.procs.2010.04.042 ICCS 2010.
[45] J.-P. Pons and J.-D. Boissonnat. 2007. Delaunay deformable models: Topology-adaptive meshes based on the restricted Delaunay triangulation. In IEEE Conference on Computer Vision and Pattern Recognition.
[46] J.-P. Pons, F. Ségonne, J.-D. Boissonnat, L. Rineau, M. Yvinec, and R. Keriven. 2007. High-quality consistent meshing of multi-label datasets. In Information Processing in Medical Imaging. 198–210.
[47] L. Rineau and M. Yvinec. 2007a. A generic software design for Delaunay refinement meshing. Computational Geometry Theory Applications 38, 100–110. · Zbl 1114.65310
[48] L. Rineau and M. Yvinec. 2007b. Meshing 3D domains bounded by piecewise smooth surfaces. In Proceedings of the 16th International Meshing Roundtable. 443–460. · Zbl 1134.65327
[49] J. Ruppert. 1995. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. Journal of Algorithms 18, 3, 548–585. · Zbl 0828.68122
[50] N. Salman, M. Yvinec, and Q. Mérigot. 2010. Feature preserving mesh generation from 3D point clouds. Computer Graphics Forum 29, 1623–1632. Retrieved from http://hal.inria.fr/inria-00497632 Special issue for EUROGRAPHICS Symposium on Geometry Processing.
[51] S. P. Sastry, S. M. Shontz, and S. A. Vavasis. 2012. A log-barrier method for mesh quality improvement and untangling. Engineering with Computers, 1–15. DOI:http://dx.doi.org/10.1007/s00366-012-0294-6
[52] J. Schöberl. 1997. NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science 1, 1, 41–52. DOI:http://dx.doi.org/10.1007/s007910050004 · Zbl 0883.68130
[53] J. Schöberl. 2003. NETGEN - 4.3. Johannes Kepler University Linz.
[54] J. R. Shewchuk. 1998. Tetrahedral mesh generation by Delaunay refinement. In Proceedings of the 14th Annual Symposium on Computer Geometry. 86–95.
[55] J. R. Shewchuk. 2012. Unstructured mesh generation. In Combinatorial Scientific Computing. CRC Press. 257–297.
[56] H. Si. 2006. TetGen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator. Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstr. 39, 10117 Berlin, Germany. Retrieved from http://tetgen.berlios.de.
[57] J. Tournois, C. Wormser, P. Alliez, and M. Desbrun. 2009. Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Transactions on Graphics 28(3), 75:1–75:9. http://hal.inria.fr/inria-00359288 SIGGRAPH ’2009 Conference Proc.
[58] S. A. Vavasis. 1999. QMG 2.0 Reference Manual. Retrieved from http://www.cs.cornell.edu/Info/People/vavasis/qmg2.0/ref.html.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.