×

zbMATH — the first resource for mathematics

Homological properties of the homology algebra of the Koszul complex of a local ring: examples and questions. (English) Zbl 1347.13007
Let \(R\) be a local commutative noetherian ring and \(HKR\) the homology ring of the corresponding Koszul complex. We study the homological properties of \(HKR\) in particular the Avramov spectral sequence. When the embedding dimension of \(R\) is four and when \(R\) can be presented with quadratic relations we have found 101 cases where this spectral sequence degenerates and only three cases where it does not degenerate. We also determine completely the Hilbert series of the bigraded Tor of these \(HKR\) in Tables A-D at the end of the paper. We also study some higher embedding dimensions. Among the methods used are the programme BERGMAN by Jörgen Backelin et al., the Macaulay2-package DG Algebras by Frank Moore combined with results by V. E. Govorov [Math. Notes 12, 552–556 (1973; Zbl 0253.16003)], C. Löfwall [Mat. Inst., Stockh. Univ. 5 (1976; Zbl 0429.13008)], V. A. Ufnarovskij [Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 57, 5–177 (1990; Zbl 0706.16001)] and others.

MSC:
13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)
13P20 Computational homological algebra
68W30 Symbolic computation and algebraic computation
14H10 Families, moduli of curves (algebraic)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Correction, Ann. of Math. 116, 661. · Zbl 0454.55004
[2] Avramov, L. L.; Golod, E. S., The homology algebra of the Koszul complex of a local Gorenstein ring, Mat. Zametki, Math. Notes, 9, 30-32, (1971), (in Russian). English translation: · Zbl 0222.13014
[3] Avramov, L. L., The Hopf algebra of a local ring, Izv. Akad. Nauk SSSR Ser. Mat., Math. USSR, Izv., 8, 259-284, (1974), (in Russian). English translation: · Zbl 0299.13011
[4] Avramov, L. L., Obstructions to the existence of multiplicative structures on minimal free resolutions, Amer. J. Math., 103, 1-31, (1981) · Zbl 0447.13006
[5] Avramov, L. L., Infinite free resolutions, (Six Lectures on Commutative Algebra, Bellaterra, 1996, Progr. Math., vol. 166, (1998), Birkhäuser Basel), 1-118 · Zbl 0934.13008
[6] Backelin, J., BERGMAN, a programme for (non-commutative) Gröbner basis calculations, available at
[7] Eisenbud, D.; Koh, J., Nets of alternating matrices and the linear Syzygy conjectures, Adv. Math., 106, 1-35, (1994) · Zbl 0809.15007
[8] Govorov, V. E., Graded algebras, Mat. Zametki, Math. Notes, 12, 556-562, (1973), (in Russian). English translation: · Zbl 0253.16003
[9] Katthän, L., A non-golod ring with a trivial product on its Koszul homology · Zbl 1370.13014
[10] Lemaire, J.-M., Algèbres connexes et homologie des espaces de lacets, Lecture Notes in Math., vol. 422, (1974), Springer-Verlag · Zbl 0293.55004
[11] Löfwall, C., On the subalgebra generated by one-dimensional elements in the yoneda ext-algebra, (Roos, J.-E., Algebra, Algebraic Topology, and Their Interactions, Lecture Notes in Math., vol. 1183, (1986), Springer-Verlag Berlin, New York), 291-338
[12] C. Löfwall, The Yoneda Ext-algebra for an equi-characteristic local \(\operatorname{ring}(R, m)\) with \(m^3 = 0\), unpublished manuscript, circa 1976.
[13] Löfwall, C.; Roos, J.-E., Cohomologie des algèbres de Lie graduées et séries de Poincaré-Betti non rationnelles, C. R. Acad. Sci. Paris, 290, A733-A736, (1980)
[14] Löfwall, C.; Roos, J.-E., A nonnilpotent 1-2-presented graded Hopf algebra whose Hilbert series converges in the unit circle, Adv. Math., 130, 161-200, (1997) · Zbl 0903.17012
[15] Moore, Frank, . A package for that is used to define and manipulate DG algebras, available at
[16] Roos, J.-E., Relations between the Poincaré-Betti series of loop spaces and of local rings, (Springer Lecture Notes in Math., vol. 740, (1979)), 285-322
[17] Roos, J.-E., On the use of graded Lie algebras in the theory of local rings, (Sharp, R. Y., Commutative Algebra, Durham, 1981, London Math. Soc. Lecture Notes Ser., vol. 72, (1982), Cambridge Univ. Press Cambridge), 204-230
[18] Roos, J.-E., A computer-aided study of the graded Lie-algebra of a local commutative Noetherian ring (with an appendix by clas Löfwall), J. Pure Appl. Algebra, 91, 255-315, (1994) · Zbl 0804.13004
[19] Ufnarovski, V., Combinatorial and asymptotic methods in algebra, (Kostrikin, A. I.; Shafarevich, I. R., Algebra VI, Encyclopaedia Math. Sci., vol. 57, (1994), Springer Berlin), 1-196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.