×

Modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. (English) Zbl 1346.93278

Summary: This paper focuses on the problem of modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. A reduced dynamic model is obtained by appropriately processing affine and holonomic constraints, respectively. Then, finite-time tracking controllers are designed to ensure that output tracking errors of closed-loop system converge to zero in finite time while the constraint force remains bounded. Finally, detailed simulation results are provided to confirm the effectiveness of the control strategy.

MSC:

93C85 Automated systems (robots, etc.) in control theory
70F20 Holonomic systems related to the dynamics of a system of particles
93B51 Design techniques (robust design, computer-aided design, etc.)
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yang J, Li S H, and Yu X H, Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, IEEE Transactions on Industrial Electronics, 2013, 60(1): 160-169. · doi:10.1109/TIE.2012.2183841
[2] Zhang B L, Han Q L, and Zhang X M, Sliding mode control with mixed current and delayed states for offshore steel jacket platforms, IEEE Transactions on Control Systems Technology, 2014, 22(5): 1769-1783. · doi:10.1109/TCST.2013.2293401
[3] Liu R J and Li S H, Optimal integral sliding mode control scheme based on pseudo spectral method for robotic manipulators, International Journal of Control, 2014, 87(6): 1131-1140. · Zbl 1291.93081 · doi:10.1080/00207179.2013.868610
[4] Liu R J and Li S H, Suboptimal integral sliding mode controller design for a class of affine systems, Journal of Optimization Theory and Applications, 2014, 161(3): 877-904. · Zbl 1293.49069 · doi:10.1007/s10957-013-0312-x
[5] Man Z H and Yu X H, Terminal sliding mode control of MIMO linear systems, IEEE Transactions on Circuits and Systems Circuits and Systems I: Fundamental Theory and Applications, 1997, 44(11): 1065-1070. · Zbl 0879.35090 · doi:10.1109/81.641769
[6] Wu Y Q, Yu X H, and Man Z H, Terminal sliding mode control design for uncertain dynamic systems, Systems and Control Letters, 1998, 34(5): 281-287. · Zbl 0909.93005 · doi:10.1016/S0167-6911(98)00036-X
[7] Wu Y Q, Wang B, and Zong G D, Finite-time tracking controller design for nonholonomic systems with extended chained form, IEEE Transactions on Circuits and Systems II: Express Briefs, 2005, 50(11): 798-802.
[8] Xiao L and Zhang Y N, A new performance index for the repetitive motion of mobile manipulators, IEEE Transactions on Cybernetics, 2014, 44(2): 280-292. · doi:10.1109/TCYB.2013.2253461
[9] Kang Y, Li Z J, and Dong Y F, Markovian-based fault-tolerant control for wheeled mobile manipulators, IEEE Transactions on Control Systems Technology, 2012, 20(1): 266-276.
[10] Wang X Y, Sun X J, Li S H, et al., Output feedback domination approach for finite-time force control of an electrohydraulic actuator, IET Control Theory and Application, 2012, 6(7): 921-934. · doi:10.1049/iet-cta.2011.0461
[11] Galicki M, Finite-time control of robotic manipulators, Automatica, 2015, 51(1): 49-54. · Zbl 1309.93109 · doi:10.1016/j.automatica.2014.10.089
[12] Dong W J, On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty, Automatica, 2002, 38(9): 1475-1484. · Zbl 1005.93035 · doi:10.1016/S0005-1098(02)00060-2
[13] Li Z J, Ge S S, and Ming A G, Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(3): 607-616. · doi:10.1109/TSMCB.2006.888661
[14] Li Z J, Ge S S, and Adams M, Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators, IEEE Transactions on Control Systems Technology, 2008, 16(6): 1308-1315. · doi:10.1109/TCST.2008.917228
[15] Li Z J, Ge S S, Adams M, et al., Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators, Automatica, 2008, 44(3): 776-784. · doi:10.1016/j.automatica.2007.07.012
[16] Lin S and Goldenberg A A, Neural-network control of mobile manipulators, IEEE Transactions on Neural Networks, 2001, 12(5): 1121-1133. · doi:10.1109/72.950141
[17] Kai, T.; Kimura, H.; Hara, S., Nonlinear control analysis on nonholonomic dynamic systems with affine constraints, 1459-1464 (2005) · Zbl 1100.53030
[18] Kai T, Mathematical modelling and theoretical analysis of nonholonomic kinematic systems with a class of rheonomous affine constraints, Applied Mathematical Modelling, 2012, 36(7): 3189-3200. · Zbl 1252.70037 · doi:10.1016/j.apm.2011.10.015
[19] Nersesov S G, Nataraj C, and Avis J M, Design of finite-time stabilizing controllers for nonlinear dynamical systems, International Journal of Robust and Nonlinear Control, 2009, 19(8): 900-918. · Zbl 1166.93013 · doi:10.1002/rnc.1359
[20] Ghasemi M, Nersesovn S, and Clayton G, Finite-time tracking using sliding mode control, Journal of the Franklin Institute, 2014, 351(5): 2966-2990. · Zbl 1372.93061 · doi:10.1016/j.jfranklin.2014.02.001
[21] Nersesova S G and Haddad W M, Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Analysis: Hybrid Systems, 2008, 2(3): 832-845. · Zbl 1223.34089
[22] Sun W and Wu Y Q, Adaptive motion/force tracking control for a class of mobile manipulators, Asian Journal of Control, 2014, 17(6): 2409-2416. · Zbl 1338.93254 · doi:10.1002/asjc.1122
[23] Mcclamroch N H and Wang D, Feedback stabilization and tracking of constrained robots, IEEE Transactions on Automatic Control, 1988, 33(5): 419-426. · Zbl 0648.93045 · doi:10.1109/9.1220
[24] Su C Y and Stepanenko Y, Robust motion/force control of mechanical systems with classical nonholonomic constraints, IEEE Transactions on Automatic Control, 1994, 39(3): 609-614. · Zbl 0925.93384 · doi:10.1109/9.280771
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.