×

zbMATH — the first resource for mathematics

Adaptive finite-time control for nonlinear teleoperation systems with asymmetric time-varying delays. (English) Zbl 1346.93226
Summary: This paper addresses the adaptive finite-time control problem of nonlinear teleoperation system in the presence of asymmetric time-varying delays. To achieve the finite-time position tracking, a novel adaptive finite-time coordination algorithm based on subsystem decomposition is developed. By introducing a switching-technique-based error filtering into our design framework, the complete closed-loop master (slave) teleoperation system is modeled as a special class of switched system, which is composed of two subsystems. To analyze such system, a finite-time state-independent input-to-output stability criterion is first developed for some normal switched nonlinear delayed systems. Then based on the classical Lyapunov-Krasovskii method, the stability of complete closed-loop systems is obtained. It is shown that the proposed scheme can make the position errors converge into a deterministic domain in finite time when the robots continuously contact with human operator and/or the environment in the presence of asymmetric time-varying delays. Finally, the simulation results are given to demonstrate the effectiveness.

MSC:
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
93E11 Filtering in stochastic control theory
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hokayem, Bilateral teleoperation: an historical survey, Automatica 42 (12) pp 2035– (2006) · Zbl 1104.93009 · doi:10.1016/j.automatica.2006.06.027
[2] Nuño, Passivity-based control for bilateral teleoperation: a tutorial, Automatica 47 (3) pp 485– (2011) · Zbl 1219.93081 · doi:10.1016/j.automatica.2011.01.004
[3] Ferre, Advances in Telerobotics (2007) · doi:10.1007/978-3-540-71364-7
[4] Zhu, Stability guaranteed teleoperation: an adaptive motion/force control approach, IEEE Transactions on Automatic Control 45 (11) pp 1951– (2000) · Zbl 0991.93062 · doi:10.1109/9.887620
[5] Kim, A design of bilateral teleoperation systems using composite adaptive controller, Control Engineering Practice 21 (12) pp 1641– (2013) · doi:10.1016/j.conengprac.2013.08.013
[6] Nuño, An adaptive controller for nonlinear teleoperators, Automatica 46 (1) pp 155– (2010) · Zbl 1214.93059 · doi:10.1016/j.automatica.2009.10.026
[7] Li, Adaptive control of bilateral teleoperation with unsymmetrical time-varying delays, International Journal of Innovative Computing, Information and Control 9 (2) pp 753– (2013)
[8] Chopra, Synchronization of bilateral teleoperators with time-delay, Automatica 44 (8) pp 2142– (2008) · Zbl 1283.93094 · doi:10.1016/j.automatica.2007.12.002
[9] Nuño, Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays, IEEE Transactions on Automatic Control 56 (4) pp 935– (2011) · Zbl 1368.93308 · doi:10.1109/TAC.2010.2103415
[10] Hashemzadeh, Teleoperation in the presence of varying time delays and sandwich linearity in actuators, Automatica 49 (9) pp 2819– (2013) · Zbl 1364.93734 · doi:10.1016/j.automatica.2013.05.012
[11] Ahn SH Park BS Yoon JS A teleoperation position control for 2-DOF telemanipulators with control input saturation Proceedings of IEEE International Symposium on Industrial Electronics Pusan, Korea 2001 1081 1090
[12] Nuño, A globally stable PD controller for bilateral teleoperators, IEEE Transactions On Robotics 24 (3) pp 753– (2008) · doi:10.1109/TRO.2008.921565
[13] Zhai, Robust saturation-based control of bilateral teleoperation without velocity measurements, International Journal of Robust and Nonlinear Control 25 pp 2582– (2015) · Zbl 1328.93179 · doi:10.1002/rnc.3214
[14] Yang, Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system, IEEE Transactions on Fuzzy Systems 22 (3) pp 631– (2014) · doi:10.1109/TFUZZ.2013.2269694
[15] Park JH Cho HC Sliding-mode controller for bilateral teleoperation with varying time delay IEEE/ASME International Conference on Advanced Intelligent Mechatronics Atlanta, USA 1999 311 316
[16] Sim, Internet-based teleoperation of an intelligent robot with optimal two-layer fuzzy controller, IEEE Transactions on Industrial Electronics 53 (4) pp 1362– (2006) · doi:10.1109/TIE.2006.878295
[17] Li, Trilateral teleoperation of adaptive fuzzy force/motion control for nonlinear teleoperators with communication random delays, IEEE Transactions on Fuzzy Systems 21 (4) pp 610– (2013) · doi:10.1109/TFUZZ.2012.2224116
[18] Ferrell, Delayed force feedback, Human Factors 8 (5) pp 449– (1966) · doi:10.1177/001872086600800509
[19] Leung, Bilateral controller for teleoperators with time delay via \(\mu\)-synthesis, IEEE Transaction on Robotics and Automation 11 (1) pp 105– (1995) · doi:10.1109/70.345941
[20] Hua, Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays, IEEE Transactions on Robotics 26 (5) pp 925– (2010) · doi:10.1109/TRO.2010.2053736
[21] Hua, A new coordinated slave torque feedback control algorithm for network-based teleoperation systems, IEEE/ASME Transactions on Mechatronics 18 (2) pp 764– (2013) · doi:10.1109/TMECH.2012.2185506
[22] Nuño, Position tracking for nonlinear teleoperators with variable time-delay, International Journal of Robotics Research 28 (7) pp 895– (2009) · Zbl 05745135 · doi:10.1177/0278364908099461
[23] Nuño, Control of teleoperators with joint flexibility, uncertain parameters and time-delays, Robotics and Autonomous Systems 62 (12) pp 1691– (2014) · doi:10.1016/j.robot.2014.08.003
[24] Sarras, An adaptive controller for nonlinear teleoperators with variable time-delays, Journal of the Franklin Institute 351 (10) pp 4817– (2014) · Zbl 1395.93305 · doi:10.1016/j.jfranklin.2014.07.016
[25] Li, Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays, IEEE Transactions on Fuzzy Systems 19 (4) pp 745– (2011) · doi:10.1109/TFUZZ.2011.2143417
[26] Hua, Teleoperation over the Internet with/without velocity signal, IEEE Transactions on Instrumentation and Measurement 60 (1) pp 4– (2011) · doi:10.1109/TIM.2010.2065410
[27] Polushin, A control scheme for stable force-reflecting teleoperation over IP networks, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 36 (4) pp 930– (2006) · doi:10.1109/TSMCB.2005.861878
[28] Polushin, A small gain framework for networked cooperative force-reflecting teleoperation, Automatica 49 (2) pp 338– (2013) · Zbl 1259.93020 · doi:10.1016/j.automatica.2012.11.001
[29] Polushin, A force-reflection algorithm for improved transparency in bilateral teleoperation with communication delay, IEEE/ASME Transactions on Mechatronics 12 (3) pp 361– (2007) · doi:10.1109/TMECH.2007.897285
[30] Polushin, Control schemes for stable teleoperation with communication delay based on IOS small gain theorem, Automatica 42 (6) pp 905– (2006) · Zbl 1117.93353 · doi:10.1016/j.automatica.2006.02.020
[31] Man, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulator, IEEE Transaction on Automatic Control 39 (12) pp 2464– (1994) · Zbl 0825.93551 · doi:10.1109/9.362847
[32] Hong, Finite-time input-to-state stability and applications to finite-time control design, SIAM Journal on Control and Optimization 48 (7) pp 4395– (2010) · Zbl 1210.93066 · doi:10.1137/070712043
[33] Zou, Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 41 (4) pp 950– (2011) · doi:10.1109/TSMCB.2010.2101592
[34] Yu, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica 41 (11) pp 1957– (2005) · Zbl 1125.93423 · doi:10.1016/j.automatica.2005.07.001
[35] Cao, Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking, Systems & Control Letters 59 (9) pp 522– (2010) · Zbl 1207.93103 · doi:10.1016/j.sysconle.2010.06.002
[36] Wang, Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics, IEEE Transactions on Industrial Electronics 56 (9) pp 3296– (2009) · doi:10.1109/TIE.2008.2011350
[37] Kang Y Zhao P Finite-time stability and input-to-state stability of stochastic nonlinear systems Proceedings of the 31st Chinese Control Conference Hefei, China 2012 1529 1534
[38] Li, Finite-time consensus and collision avoidance control algorithms for multiple AUVs, Automatica 49 (11) pp 3359– (2013) · Zbl 1315.93004 · doi:10.1016/j.automatica.2013.08.003
[39] Malysz P Sirouspour S Dual-master teleoperation control of kinematically redundant robotic slave manipulators IEEE/RSJ International Conference on Intelligent Robots and Systems St. Louis, USA 2009 5115 5120
[40] Malysz, Nonlinear and filtered force/position mappings in bilateral teleoperation with application to enhanced stiffness discrimination, IEEE Transactions on Robotics 25 (5) pp 1134– (2009) · doi:10.1109/TRO.2009.2017803
[41] Kelly, Advanced Textbooks in Control and Signal Processing, in: Control of Robot Manipulators in Joint Space (2005)
[42] Khalil, Nonlinear Systems (2002)
[43] Sontag, Lyapunov characterizations of input to output stability, SIAM Journal on Control and Optimization 39 (1) pp 226– (2000) · Zbl 0968.93076 · doi:10.1137/S0363012999350213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.