×

zbMATH — the first resource for mathematics

Quantum gravity from the point of view of locally covariant quantum field theory. (English) Zbl 1346.83001
Summary: We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin-Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.

MSC:
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
83C45 Quantization of the gravitational field
81T20 Quantum field theory on curved space or space-time backgrounds
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
Software:
pAQFT
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bahns, D.; Rejzner, K.; Zahn, J., The effective theory of strings, Commun. Math. Phys., 327, 779-814, (2014) · Zbl 1292.81107
[2] Barnich, G.; Brandt, F.; Henneaux, M., General solution of the Wess-Zumino consistency condition for Einstein gravity, Phys. Rev. D, 51, r1435-r1439, (1995)
[3] Batalin, I.A.; Vilkovisky, G.A., Relativistic S matrix of dynamical systems with boson and fermion constraints, Phys. Lett., 69B, 309, (1977)
[4] Batalin, I.A.; Vilkovisky, G.A., Gauge algebra and quantization, Phys. Lett., 102, 27, (1981)
[5] Becchi, C.; Rouet, A.; Stora, R., Renormalization of the abelian Higgs-kibble model, Commun. Math. Phys., 42, 127, (1975)
[6] Becchi, C.; Rouet, A.; Stora, R., Renormalization of gauge theories, Ann. Phys., 98, 287, (1976)
[7] Bergmann, P.G., Observables in general relativity, Rev. Modern Phys., 33, 510, (1961) · Zbl 0098.42501
[8] Bergmann, P.G.; Komar, A., Poisson brackets between locally defined observables in general relativity, Phys. Rev. Lett, 4, 432, (1960)
[9] Benini, M.; Dappiaggi, C.; Murro, S., Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states, J. Math. Phys., 55, 082301, (2014) · Zbl 1298.83044
[10] Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D 67, 084033 (2003) [Erratum: Phys. Rev. D 71, 069903 (2005)]
[11] Bogoliubov N.N., Shirkov D.V.: Introduction to the Theory of Quantized Fields. Interscience Publishers, Inc., New York (1959) · Zbl 0088.21701
[12] Brennecke, F.; Dütsch, M., Removal of violations of the master Ward identity in perturbative QFT, Rev. Math. Phys., 20, 119-172, (2008) · Zbl 1149.81017
[13] Brown, J.D.; Kuchař, K.V., Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D, 51, 5600, (1995)
[14] Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541-1599 (2009). arXiv:0901.2038v2 [math-ph] · Zbl 1201.81090
[15] Brunetti, R.; Fredenhagen, K., Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds, Commun. Math. Phys., 208, 623-661, (2000) · Zbl 1040.81067
[16] Brunetti, R., Fredenhagen, K.: Towards a background independent formulation of perturbative quantum gravity. In: Fauser, B. et al. (eds.) Proceedings of Workshop on Mathematical and Physical Aspects of Quantum Gravity, Blaubeuren, Germany, 28 Jul-1 Aug 2005. Quantum Gravity, pp. 151-159. arXiv:gr-qc/0603079v3 · Zbl 1120.83016
[17] Brunetti, R.; Fredenhagen, K.; Köhler, M., The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes, Commun. Math. Phys., 180, 633, (1996) · Zbl 0923.58052
[18] Brunetti, R., Fredenhagen, K., Lauridsen-Ribeiro, P.: Algebraic structure of classical field theory I: kinematics and linearized dynamics for real scalar fields. arXiv:1209.2148v2 [math-ph] · Zbl 1440.70014
[19] Brunetti, R.; Fredenhagen, K.; Verch, R., The generally covariant locality principle—a new paradigm for local quantum field theory, Commun. Math. Phys., 237, 31-68, (2003) · Zbl 1047.81052
[20] Baulieu, L.; Thierry-Mieg, J., Algebraic structure of quantum gravity and the classification of the gravitational anomalies, Phys. Lett., 145, 53-60, (1984)
[21] Coley, A.; Hervik, S.; Pelavas, N., Spacetimes characterized by their scalar curvature invariants, Class. Quantum Gravity, 26, 025013, (2009) · Zbl 1158.83023
[22] Curci, G.; Ferrari, R., A canonical and Lorentz covariant quantization of Yang-Mills theories, Nuovo Cimento A, 35, 273, (1976)
[23] DeWitt B.S.: The Global Approach to Quantum Field Theory, vols. 1, 2. The Int. Ser. Monogr. Phys. Oxford Science Publications, Oxford (2003)
[24] Dittrich, B., Partial and complete observables for canonical general relativity, Class. Quantum Gravity, 23, 6155, (2006) · Zbl 1111.83015
[25] Domagała, M.; Giesel, K.; Kamiński, W.; Lewandowski, J., Gravity quantized: loop quantum gravity with a scalar field, Phys. Rev. D, 82, 104038, (2010)
[26] Doplicher, S.; Morsella, G.; Pinamonti, N., On quantum spacetime and the horizon problem, J. Geom. Phys., 74, 196-210, (2013) · Zbl 1283.83018
[27] Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. arXiv:1502.02705 [math-ph] · Zbl 1362.81064
[28] Dütsch, M.; Boas, F.-M., The master Ward identity, Rev. Math. Phys, 14, 977-1049, (2002) · Zbl 1037.81074
[29] Dütsch, M.; Fredenhagen, K., A local (perturbative) construction of observables in gauge theories: the example of QED, Commun. Math. Phys., 203, 71-105, (1999) · Zbl 0938.81028
[30] Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory, and deformation quantization. In: Proceedings of the Conference on Mathematical Physics in Mathematics and Physics, Siena (2000). arXiv:hep-th/0101079 · Zbl 0499.58003
[31] Dütsch, M.; Fredenhagen, K., The master Ward identity and generalized Schwinger-Dyson equation in classical field theory, Commun. Math. Phys., 243, 275, (2003) · Zbl 1049.70017
[32] Epstein, H.; Glaser, V., The role of locality in perturbation theory, Ann. Inst. H. Poincaré A, 19, 211, (1973) · Zbl 1216.81075
[33] Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013). arXiv:1203.0261 [math-ph] · Zbl 1266.83024
[34] Fewster, C.J.; Pfenning, M.J., A quantum weak energy inequality for spin-one fields in curved spacetime, J. Math. Phys., 44, 4480-4513, (2003) · Zbl 1062.81115
[35] Fredenhagen, K.; Haag, R., On the derivation of Hawking radiation associated with the formation of a black hole, Commun. Math. Phys., 127, 273, (1990) · Zbl 0692.53040
[36] Fredenhagen, K.; Rejzner, K., Batalin-Vilkovisky formalism in the functional approach to classical field theory, Commun. Math. Phys., 314, 93-127, (2012) · Zbl 1418.70034
[37] Fredenhagen, K., Rejzner, K.: Local covariance and background independence. In: Quantum Field Theory and Gravity Conceptual and Mathematical Advances in the Search for a Unified Framework. Birkhäuser 2012, Proceedings of the Conference in Regensburg (28 Sep-1 Oct 2010). arXiv:1102.2376 [math-ph] · Zbl 0139.46003
[38] Fredenhagen, K.; Rejzner, K., Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory, Commun. Math. Phys., 317, 697-725, (2013) · Zbl 1263.81245
[39] Fredenhagen, K.; Rejzner, K., QFT on curved spacetimes: axiomatic framework and examples, J. Math. Phys., 57, 031101, (2016) · Zbl 1338.81299
[40] Friedrich, H.: Is general relativity ‘essentially understood’? Ann. Phys. 15, 84-108 (2006) · Zbl 1098.83005
[41] Friedrich, H., Rendall, A.: The Cauchy problem for the Einstein equations. In: Schmidt, B. (ed.) Einstein’s Field Equations and Their Physical Implications. Lecture Notes in Physics, vol. 540. Springer, Berlin (2000) · Zbl 1006.83003
[42] Geroch, R.P., Domain of dependence, J. Math. Phys., 11, 437, (1970) · Zbl 0189.27602
[43] Gomis, J.; Weinberg, S., Are nonrenormalizable gauge theories renormalizable?, Nucl. Phys. B, 469, 473, (1996) · Zbl 1003.81569
[44] Haag R.: Local Quantum Physics, 2nd edn. Springer, Berlin (1996) · Zbl 0857.46057
[45] Haag, R.; Kastler, D., An algebraic approach to quantum field theory, J. Math. Phys., 5, 848, (1964) · Zbl 0139.46003
[46] Hamilton, R.S., The inverse function theorem of Nash and Moser, Bull. Am. Math. Soc. (N.S.), 7, 65-222, (1982) · Zbl 0499.58003
[47] Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975) [Erratum: Commun. Math. Phys. 46, 206 (1976)] · Zbl 1378.83040
[48] Hervik, S.; Coley, A., Curvature operators and scalar curvature invariants, Class. Quantum Gravity, 27, 095014, (2010) · Zbl 1190.83087
[49] Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008). arXiv:0705.3340v3 [gr-qc] · Zbl 1161.81022
[50] Hollands, S.; Wald, R.M., Local Wick polynomials and time ordered products of quantum fields in curved spacetime, Commun. Math. Phys., 223, 289, (2001) · Zbl 0989.81081
[51] Hollands, S., Wald, R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005). arXiv:gr-qc/0404074 · Zbl 1078.81062
[52] Hörmander L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Springer, Berlin (2003) · Zbl 1028.35001
[53] Jakobs, S.: Eichbrücken in der klassischen Feldtheorie. diploma thesis under the supervision of K. Fredenhagen, Hamburg (2009), DESY-THESIS-2009-009 · Zbl 0098.42607
[54] Lerner, D.E., The space of Lorentz metrics, Commun. Math. Phys., 32, 19-38, (1973) · Zbl 0257.58003
[55] Lichnerowicz, A., Propagateurs et commutateurs en relativité générale, Publications Mathématiques de l’IHÉS, 10, 5-56, (1961) · Zbl 0098.42607
[56] Khavkine, I., Local and gauge invariant observables in gravity, Class. Quantum Gravity, 32, 185019, (2015) · Zbl 1327.83125
[57] Kriegl, A., Michor, P.: Convenient setting of global analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997). Online version: http://www.ams.org/online_bks/surv53/1 · Zbl 0889.58001
[58] Kugo, T.; Ojima, I., Subsidiary conditions and physical \(S\)-matrix unitarity in indefinite metric quantum gravitational theory, Nucl. Phys., 144, 234, (1978)
[59] Kugo, T.; Ojima, I., Manifestly covariant canonical formulation of Yang-Mills theories physical state subsidiary conditions and physical S-matrix unitarity, Phys. Lett. B, 73, 459-462, (1978)
[60] Kugo, T., Ojima, I.: Local covariant operator formalism of non-abelian gauge theories and quark confinement problem. Suppl. Prog. Theor. Phys. 66(1) (1979) [Erratum: Prog. Theor. Phys. 71, 1121 (1984)] · Zbl 1098.81592
[61] Müller, O.; Sánchez, M., Lorentzian manifolds isometrically embeddable in \(L\)\^{}{\(N\)}, Trans. Am. Math. Soc., 363, 5367-5379, (2011) · Zbl 1231.53059
[62] Nakanishi, N., Indefinite-metric quantum field theory of general relativity, Prog. Theor. Phys., 59, 972, (1978) · Zbl 1098.83559
[63] Nakanishi, N., Indefinite-metric quantum field theory of general relativity, Prog. Theor. Phys., 60, 1190-1203, (1978) · Zbl 1098.83558
[64] Nakanishi, N., Ojima, I.: Covariant operator formalism of gauge theories and quantum gravity. World Scientific Lecture Notes in Physics, vol. 27. World Scientific (1990)
[65] Neeb, K.-H.: Monastir lecture notes on infinite-dimensional Lie groups. http://www.math.uni-hamburg.de/home/wockel/data/monastir.pdf · Zbl 1098.83551
[66] Nishijima, K.; Okawa, M., The becchi-Rouet-Stora transformation for the gravitational field, Prog. Theor. Phys., 60, 272-283, (1978) · Zbl 1098.83551
[67] Ohlmeyer, S.: The measurement of length in linear quantum gravity. Ph.D. thesis, Hamburg (1997)
[68] Radzikowski, M.J., Micro-local approach to the Hadamard condition in quantum field theory on curved space-time, Commun. Math. Phys., 179, 529-553, (1996) · Zbl 0858.53055
[69] Rejzner, K., Fermionic fields in the functional approach to classical field theory, Rev. Math. Phys., 23, 1009-1033, (2011) · Zbl 1242.81112
[70] Rejzner, K.: Batalin-Vilkovisky formalism in locally covariant field theory, Ph.D. thesis, DESY-THESIS-2011-041, Hamburg. arXiv:1111.5130 [math-ph] · Zbl 1263.81245
[71] Rejzner, K.: Remarks on local symmetry invariance in perturbative algebraic quantum field theory. Annales Henri Poincaré 16, 205-238 (2015). arXiv:1301.7037 [math-ph] · Zbl 1306.81137
[72] Reuter, M., Nonperturbative evolution equation for quantum gravity, Phys. Rev. D, 57, 971, (1998)
[73] Reuter, M.; Saueressig, F., Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D, 65, 065016, (2002)
[74] Goroff, M.H.; Sagnotti, A., Quantum gravity at two loops, Phys. Lett. B, 160, 81, (1985)
[75] Rovelli, C., Partial observables, Phys. Rev. D, 65, 124013, (2002)
[76] Sahlmann, H.; Verch, R., Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime, Rev. Math. Phys., 13, 1203-1246, (2001) · Zbl 1029.81053
[77] Thiemann, T., Reduced phase space quantization and Dirac observables, Class. Quantum Gravity, 23, 1163, (2006) · Zbl 1091.83014
[78] Tyutin, I.V.: Gauge invariance in field theory and statistical physics in operator formalism (in Russian). Lebedev preprint 75-39 (1975) · Zbl 1091.83014
[79] van de Ven, A.E.M., Two loop quantum gravity, Nucl. Phys. B, 378, 309, (1992)
[80] Wald, R.M., The back reaction effect in particle creation in curved space-time, Commun. Math. Phys., 54, 1, (1977) · Zbl 1173.81328
[81] Weinberg, S.: Ultraviolet divergences in quantum theories of gravitation. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge, pp. 790-831 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.