×

On the stability of discrete tripole, quadrupole, Thomson’ vortex triangle and square in a two-layer/homogeneous rotating fluid. (English) Zbl 1346.76204

Summary: A two-layer quasigeostrophic model is considered in the \(f\)-plane approximation. The stability of a discrete axisymmetric vortex structure is analyzed for the case when the structure consists of a central vortex of arbitrary intensity \(\Gamma\) and two/three identical peripheral vortices. The identical vortices, each having a unit intensity, are uniformly distributed over a circle of radius \(R\) in a single layer. The central vortex lies either in the same or in another layer. The problem has three parameters \((R,\Gamma,\alpha)\), where \(\alpha\) is the difference between layer thicknesses. A limiting case of a homogeneous fluid is also considered.A limiting case of a homogeneous fluid is also considered.
The theory of stability of steady-state motions of dynamic systems with a continuous symmetry group \(G\) is applied. The two definitions of stability used in the study are Routh stability and \(\mathcal G\)-stability. The Routh stability is the stability of a one-parameter orbit of a steady-state rotation of a vortex multipole, and the \(\mathcal G\)-stability is the stability of a three-parameter invariant set \(O_{\mathcal G}\), formed by the orbits of a continuous family of steady-state rotations of a multipole. The problem of Routh stability is reduced to the problem of stability of a family of equilibria of a Hamiltonian system. The quadratic part of the Hamiltonian and the eigenvalues of the linearization matrix are studied analytically.
The cases of zero total intensity of a tripole and a quadrupole are studied separately. Also, the Routh stability of a Thomson vortex triangle and square was proved at all possible values of problem parameters. The results of theoretical analysis are sustained by numerical calculations of vortex trajectories.

MSC:

76U05 General theory of rotating fluids
76B47 Vortex flows for incompressible inviscid fluids
76E20 Stability and instability of geophysical and astrophysical flows
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agee, E. M.; Snow, J. T.; Clare, P. R., Multiple vortex in the tornado cyclone and the occurence of tornado families, Mon. Wea. Rev., 104, 552-563, (1976)
[2] Aguiar, A.C.B.; Read, P.L.; Wordsworth, R.D.; Salter, T.; Yamazaki, Y.H., A laboratory model of saturn’s north polar hexagon, Icarus, 206, 755-763, (2009)
[3] Allison, M.; Godfrey, D. A.; Beebe, R. F., A wave dynamical interpretation of saturn’s polar hexagon, Science, 247, 1061-1063, (1990)
[4] Aref, H., Motion of three vortices, Phys. Fluids, 22, 393-400, (1979) · Zbl 0394.76025
[5] Aref, H., Stability of reactive equilibria of three vortices, Phys. Fluids, 21, 094101, (2009) · Zbl 1183.76077
[6] Aref, H.; Newton, P.K.; Stremler, M.A.; Tokieda, T.; Vainchtein, D. L., Vortex crystals, Adv. Appl. Mech., 39, 1-79, (2003)
[7] Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1997.
[8] Ashwin, J.; Ganesh, R., Coherent vortices in strongly coupled liquids, Phys. Rev. Lett., 106, 135001, (2011)
[9] Baey, J.-M.; Carton, X., Vortex multipoles in two-layer rotating shallow-water flows, J. Fluid Mech., 460, 151-175, (2002) · Zbl 1005.76028
[10] Barba, L.A., Nonshielded multipolar vortices at high Reynolds number, Phys. Rev. E, 73, 4, (2006)
[11] Barba, L.A.; Leonard, A., Emergence and evolution of tripole vortices from net-circulation initial conditions, Phys. Fluids, 19, 16, (2007) · Zbl 1146.76319
[12] Beckers, M.; Heijst, G. J. F., The observation of a triangular vortex in a rotating fluid, Fluid Dynam. Res., 22, 265-279, (1998) · Zbl 1051.76516
[13] Blackmore, D.; Ting, L.; Knio, O., Studies of perturbed three-vortex dynamics, J. Math. Phys., 48, 32, (2007) · Zbl 1144.81316
[14] Bolsinov, A.V.; Borisov, A. V.; Mamaev, I. S., The bifurcation analysis and the Conley index in mechanics, Regul. Chaotic Dyn., 17, 457-478, (2012) · Zbl 1252.76055
[15] Borisov, A.V.; Mamaev, I. S., Mathematical methods in the dynamics of vortex structures, izhevsk: R&C dynamics, (2005)
[16] Burbea, J., Motions of vortex patches, Lett. Math. Phys., 6, 1-16, (1982) · Zbl 0484.76031
[17] Burbea, J.; Landau, M., The Kelvin waves in vortex dynamics and their stability, J. Comput. Phys., 45, 127-156, (1982) · Zbl 0488.76023
[18] Cabral, H.E.; Schmidt, D. S., Stability of relative equilibria in the problem of N + 1 vortices, SIAM J. Math. Anal., 31, 231-250, (2000) · Zbl 0961.76014
[19] Caillol, P.; Grimshaw, R., Steady multipolar planar vortices with nonlinear critical layers, Geophys. Astrophys. Fluid Dyn., 98, 473-506, (2004) · Zbl 1206.86006
[20] Campbell, L. J., Transverse normal modes of finite vortex arrays, Phys. Rev. A, 24, 514-534, (1981)
[21] Carnevale, G. F.; Kloosterziel, R.C., Emergence and evolution of triangular vortices, J. Fluid Mech., 259, 305-331, (1994)
[22] Carton, X. J., Hydrodynamical modelling of oceanic vortices, Surv. Geophys., 22, 179-263, (2001)
[23] Carton, X. J., Instability of surface quasigeostrophic vortices, J. Atmos. Sci., 66, 1051-1062, (2009)
[24] Carton, X.; Ciani, D.; Verron, J.; Reinaud, J.; Sokolovskiy, M., Vortex merger in surface quasi-geostrophy, Geophys. Astrophys. Fluid Dyn., 110, 1-22, (2016)
[25] Carton, X. J.; Flierl, G.R.; Polvani, L.M., The generation of tripoles from unstable axisymmetric isolated vortex structures, Europhys. Lett., 9, 339-344, (1989)
[26] Carton, X.; Legras, B., The life-cycle of tripoles in two-dimensional incompressible flows, J. Fluid Mech., 267, 53-82, (1994) · Zbl 0816.76018
[27] Castro, A., Córdoba, D.C., and Gómez-Serrano, J., Uniformly Rotating Analytic Global Patch Solutions for Active Scalars, Preprint, arXiv:1508.10655v1 (2015), 30 pp. · Zbl 1397.35020
[28] Chaplygin, S.A., On a pulsating cylindrical vortex, Regul. Chaotic Dyn., 10, 13-22, (1899)
[29] Corréard, S.M.; Carton, X. J., Formation and stability of tripolar vortices in stratified geostrophic flows, Il Nuovo Cimento C, 22, 767-777, (1999)
[30] Crowdy, D.G., A class of exact multipolar vortices, Phys. Fluids, 11, 2556-2564, (1999) · Zbl 1149.76353
[31] Crowdy, D.G., The construction of exact multipolar equilibria of the two-dimensional Euler equations, Phys. Fluids, 14, 257-267, (2002) · Zbl 1184.76114
[32] Deem, G. S.; Zabusky, N. J., Vortex waves: stationary “V states”, interactions, recurrence, and breaking, Phys. Rev. Lett., 40, 859-862, (1978)
[33] Dhanak, M.R.; Marshall, M.P., Motion of an elliptical vortex under applied periodic strain, Phys. Fluids A, 5, 1224-1230, (1993) · Zbl 0793.76018
[34] Donnelly, R. J., Quantized Vortices in Helium II, Cambridge Studies in Low Temperature Physics, vol. 3, Cambridge: Cambridge Univ. Press, 1991.
[35] Dritschel, D. G., The stability and energetics of corotating uniform vortices, J. Fluid Mech., 157, 95-134, (1985) · Zbl 0574.76026
[36] Dritschel, D.G., The nonlinear evolution of rotating configurations of uniform vorticity, J. Fluid Mech., 172, 157-182, (1986) · Zbl 0616.76069
[37] Dritschel, D. G., The stability of elliptical vortices in an external straining flow, J. Fluid Mech., 210, 223-261, (1990) · Zbl 0686.76028
[38] Dubosq, S.; Víudez, Three-dimensionalmesoscale dipole frontal collisions, J. Phys. Oceanogr., 37, 2331-2344, (2007)
[39] Durkin, D.; Fajans, J., Experiments on two-dimensional vortex patterns, Phys. Fluids, 12, 289-293, (2000) · Zbl 1149.76365
[40] Filyushkin, B.N.; Sokolovskiy, M. A., Modeling the evolution of intrathermocline lenses in the atlantic Ocean, J. Marine Res., 69, 191-220, (2011)
[41] Filyushkin, B.N.; Sokolovskiy, M. A.; Kozhelupova, N.G.; Vagina, I.M., Dynamics of intrathermocline lenses, Dokl. Earth Sci., 434, 688-681, (2010) · Zbl 1249.86003
[42] Fine, K. S.; Cass, A. C.; Flynn, W. G.; Dryscoll, C. F., Relaxation of 2D turbulence to vortex crystal, Phys. Rev. Lett., 75, 3277-3282, (1995)
[43] Flierl, G.R., On the instability of geostrophic vortices, J. Fluid Mech., 197, 349-388, (1988) · Zbl 0655.76040
[44] Flór, J.-B.; Govers, W. S. S.; Heijst, G. J.F.; Sluis, R., Formation of a tripolar vortex in a stratified fluid, Appl. Sci. Res., 51, 405-409, (1993)
[45] Flór, J.-B.; Heijst, G. J. F., An experimental study of dipolar vortex structures in a stratified fluid, J. Fluid Mech., 279, 101-133, (1994)
[46] Flór, J.-B.; Heijst, G. J. F., Stable and unstable monopolar vortices in a stratified fluid, J. Fluid Mech., 311, 257-287, (1996)
[47] Fujita, T.T.; Wakimoto, R.M., Five scales of airflow associated with a series of downbursts on 16 July 1980, Mon. Wea. Rev., 109, 1438-1456, (1981)
[48] Godfrey, D.A., A hexagonal feature around saturn’s north pole, Icarus, 76, 335-356, (1988)
[49] Goryachev, D. N., On some cases of motion of rectilinear parallel vortex filaments, 106, (1898), Moscow
[50] Gröbli, W., Spezielle probleme über die bewegung geradliniger paralleler wirbelfäden, Vierteljschr. Naturf. Ges. Zürich, 22, 37-81, 129-165, (1877) · JFM 09.0675.01
[51] Gryanik, V. M., Dynamics of singular geostrophical vortices in a 2-level model of the atmosphere (Ocean), Izv. Atmos. Ocean Phys., 19, 227-240, (1983)
[52] Hamad, N.; Millot, C.; Taupier-Letaget, I., The surface circulation in the eastern basin of the Mediterranean sea, Sci. Mar., 70, 457-503, (2006)
[53] Hassainia, Z.; Hmidi, T., On the V-states for the generalized quasi-geostrophic equations, Comm. Math. Phys., 337, 321-371, (2015) · Zbl 1319.35188
[54] Havelock, T.H., The stability of motion of rectilinear vortices in ring formation, Philos. Mag., 11, 617-633, (1931) · Zbl 0001.08102
[55] Hmidi, T. and Mateu, J., Bifurcation of Rotating Patches from Kirchhoff Vortices, Preprint, arXiv:15008.04589v1 (2015), 21 pp. · Zbl 1351.35116
[56] Hmidi, T. and Mateu, J., Degenerate Bifurcation of the Rotating Patches, Preprint, arXiv:1510.04657v1 (2015), 39 pp.
[57] Hmidi, T. and Mateu, J., Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations, Preprint, arXiv:1601.02242v1 (2016), 46 pp. · Zbl 1360.35157
[58] Hmidi, T.; Mateu, J.; Verdera, J., Boundary regularity of rotating vortex patches, Arch. Ration. Mech. Anal., 209, 171-208, (2013) · Zbl 1286.35201
[59] Hmidi, T.; Mateu, J.; Verdera, J., On rotating doubly connected vortices, J. Differential Equations, 258, 1395-1429, (2015) · Zbl 1446.76086
[60] Hogg, N.G.; Stommel, H.M., The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 397, 1-20, (1985) · Zbl 0571.76017
[61] Hooker, S.B.; Brown, J. W.; Kirwan, A. D.; Lindermann, G. L.; Mied, R.P., Kinematics of a warm-core dipole ring, J. Geophys. Res. Oceans, 100, 24797-24809, (1995)
[62] de la Hoz, F., Hassainia, Z., and Hmidi, T., Doubly Connected V-States for the Generalized Surface Quasi-Geostrophic Equations, Preprint, arXiv:1412.4587v2 (2015), 56 pp. · Zbl 1334.35263
[63] Jischke, M.; Parang, M., On laboratory simulation of tornado-like vortices, J. Atmos. Sci., 31, 506-512, (1974)
[64] Joukowskii, N.E., Vortex theory of a rowing screw, Tr. Otdel. Fiz. Nauk Ob-va Lubit. Estestvozn., 16, 1-31, (1912)
[65] Karapetyan, A.V., The Routh theorem and its extensions, in qualitative theory of differential equations (Szeged, 1988), 271-290, (1990)
[66] Karapetyan, A.V., The Stability of Steady Motions, Moscow: Editorial URSS, 1998 (Russian).
[67] Karapetyan, A.V., Invariant sets of mechanical systems: lyapunov’s methods in stability and control, Math. Comput. Modelling, 36, 643-661, (2002) · Zbl 1129.70323
[68] Kennelly, M.A.; Evans, R. H.; Joyce, T. M., Small-scale cyclones on the periphery of gulf stream warm-core rings, J. Geophys. Res. Oceans, 90, 8845-8857, (1985)
[69] Khazin, L.G., Regular polygons of point vortices and resonance instability of steady states, Sov. Phys. Dokl., 230, 799-802, (1976)
[70] Kida, S., Motion of an elliptical vortex in an uniform shear flow, J. Phys. Soc. Japan, 50, 3517-3520, (1981)
[71] Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Leipzig: Teubner, 1876. · JFM 08.0542.01
[72] Kizner, Z., Stability of point-vortex multipoles revisited, Phys. Fluids, 23, 11, (2001) · Zbl 1308.76051
[73] Kizner, Z., On the stability of two-layer geostrophic point-vortex multipoles, Phys. Fluids, 26, 18, (2014) · Zbl 1321.76028
[74] Kizner, Z.; Berson, D.; Khvoles, R., Non-circular baroclinic modons: constructing stationary solutions, J. Fluid Mech., 489, 199-228, (2003) · Zbl 1055.76055
[75] Kizner, Z.; Khvoles, R., The tripole vortex: experimental evidence and explicit solutions, Phys. Rev. E, 70, 4, (2004)
[76] Kizner, Z.; Khvoles, R.; McWilliams, J.C., Rotating multipoles on the f-and planes, Phys. Fluids, 19, 13, (2007) · Zbl 1146.76443
[77] Kloosterziel, R.C.; Heijst, G. J. F.; Nihoul, J.C. J. (ed.); Jamart, B.M. (ed.), On tripolar vortices, 609-625, (1989), Amsterdam
[78] Kloosterziel, R.C.; Heijst, G. J. F., An experimental study of unstable barotropic vortices in a rotating fluid, J. Fluid Mech., 223, 1-24, (1991)
[79] Kossin, J.P.; Schubert, W.H., Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices, J. Atmos. Sci., 58, 2196-2209, (2001)
[80] Kossin, J.P.; Schubert, W.H.; Montgomery, M. T., Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity, J. Atmos. Sci., 57, 3893-3917, (2000)
[81] Kozlov, V. F., Construction of the stationary states of vortex patches by the method of perturbations, Izv. Atmos. Ocean Phys., 27, 115-130, (1991)
[82] Kozlov, V.V., On the degree of instability, J. Appl. Math. Mech., 57, 14-19, (1993) · Zbl 0798.70013
[83] Kulikov, D.V.; Mikkelsen, R.; Naumov, I. V.; Okulov, V. L., Diagnostics of bubble-mode vortex breakdown in swirling flow in a large-aspect-ratio cylinder, Tech. Phys. Lett, 40, 87-94, (2014)
[84] Kunze, E.; Lueck, R., Velocity profiles in a warm-core ring, J. Phys. Oceanogr., 16, 991-995, (1986)
[85] Kurakin, L. G., On the stability of the regular N-sided polygon of vortices, Dokl. Phys., 335, 729-731, (1994) · Zbl 0832.76028
[86] Kurakin, L. G., Stability, resonances, and instability of the regular vortex polygons in the circular domain, Dokl. Phys., 399, 52-55, (2004)
[87] Kurakin, L. G., On stability of a regular vortex polygon in the circular domain, J. Math. Fluid Mech., 7, s376-s386, (2005) · Zbl 1097.76031
[88] Kurakin, L. G., On the stability of thomson’s vortex configurations inside a circular domain, Regul. Chaotic Dyn., 15, 40-58, (2010) · Zbl 1229.37055
[89] Kurakin, L. G., The stability of the steady rotation of a system of three equidistant vortices outside a circle, J. Appl. Math. Mech., 75, 327-337, (2011) · Zbl 1272.76116
[90] Kurakin, L. G., Influence of annular boundaries on thomson’s vortex polygon stability, Chaos, 14, 12, (2014) · Zbl 1345.70034
[91] Kurakin, L. G.; Melekhov, A.P.; Ostrovskaya, I. V., A survey of the stability criteria of thomson’s vortex polygons outside a circular domain, (2016) · Zbl 1348.76041
[92] Kurakin, L. G.; Ostrovskaya, I.V., Stability of the thomson vortex polygon with evenly many vortices outside a circular domain, Siberian Math. J., 51, 584-598, (2010) · Zbl 1211.76027
[93] Kurakin, L. G.; Ostrovskaya, I.V., Nonlinear stability analysis of a regular vortex pentagon outside a circle, Regul. Chaotic Dyn., 17, 385-396, (2012) · Zbl 1252.76017
[94] Kurakin, L. G.; Ostrovskaya, I.V.; Sokolovskiy, M.A., Stability of discrete vortex multipoles in homogeneous and two-layer rotating fluid, Dokl. Phys., 462, 161-167, (2015)
[95] Kurakin, L. G.; Yudovich, V. I., The stability of stationary rotation of a regular vortex polygon, Chaos, 12, 574-595, (2002) · Zbl 1080.76520
[96] Kurakin, L. G.; Yudovich, V. I., On nonlinear stability of steady rotation of a regular vortex polygon, Dokl. Phys., 384, 476-482, (2002) · Zbl 1080.76520
[97] Lappa, M., Rotating Thermal Flows in Natural and Industrial Processes, Chichester: Wiley, 2012. · Zbl 1267.76001
[98] Larichev, V.D.; Reznik, G.M., On collisions between two-dimensional solitary Rossby waves, Okeanologiya, 23, 725-734, (1983)
[99] Legras, B.; Dritschel, D. G., The elliptical model of two-dimensional vortex dynamics: 1. the basic state, Phys. Fluids A, 3, 845-854, (1991) · Zbl 0733.76013
[100] Legras, B.; Santangelo, P.; Benzi, R., High-resolution numerical experiments for forced two-dimensional turbulence, Europhys. Lett., 5, 37-42, (1988)
[101] Levi-Civita, T., Sur la recherche des solutions particulières des systèmes différenties et sur LES mouvments stationaires, Prace Mat.-Fiz., 17, 1-40, (1906) · JFM 37.0345.01
[102] Luz, D.; Berry, D. L.; Piccioni, G.; Drossart, P.; Politi, R.; Wilson, C.F.; Erard, S.; Nuccilli, F., Venus’s southern polar vortex reveals precessing circulation, Science, 332, 577-580, (2011)
[103] Luzzatto-Fegiz, P.; Williamson, C.H.K., Stability of elliptical vortices from “imperfect-velocity-impulse” diagrams, Theor. Comput. Fluid Dyn., 24, 181-188, (2010) · Zbl 1191.76056
[104] Luzzatto-Fegiz, P.; Williamson, C.H.K., An efficient and general numerical method to compute steady uniform vortices, J. Comput. Phys., 230, 6495-6511, (2011) · Zbl 1408.76123
[105] Lyapunov, A. M., On constant screw motions of a rigid body in a liquid, Soobshch. Kharkov. Mat. Obshch., Ser. 2, 1, 7-60, (1888)
[106] Makarov, V. G.; Kizner, Z., Stability and evolution of uniform-vorticity dipoles, J. Fluid Mech., 672, 307-325, (2011) · Zbl 1225.76065
[107] Malkin, I.G., On stability of periodic solutions of dynamic systems, Prikl. Mat. Mekh., 8, 327-335, (1944) · Zbl 0061.19505
[108] Malkin, I.G., Stability Theory of Motion, Moscow: Nauka, 1966. · Zbl 0136.08502
[109] Markeev, A.P., Libration Points in Celestial Mechanics and Space Dynamics, Moscow: Nauka, 1978 (Russian).
[110] Marsden, J.; Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 5, 121-130, (1974) · Zbl 0327.58005
[111] Mayer, A.M., Floating magnets, Nature, 18, 258-260, (1878)
[112] Mayer, A.M., A note on experiments with floating magnets, Am. J. Sci. Arts, Ser.3, 15, 276-277, (1878)
[113] Meleshko, V.V.; Aref, H., A bibliography of vortex dynamics 1858-1956, Adv. Appl. Mech., 41, 197-292, (2007)
[114] Meleshko, V.V. and Konstantinov, M.Yu., Dynamics of Vortex Structures, Kiev: Naukova Dumka, 1993 (Russian).
[115] Mertz, G. T., Stability of body-centered polygonal configurations of ideal vortices, Phys. Fluids, 21, 1092-1095, (1978) · Zbl 0379.76042
[116] Mitchell, T. B.; Rossi, L. F., The evolution of Kirchhoff elliptic vortices, Phys. Fluids, 20, 12, (2008) · Zbl 1182.76523
[117] Morikawa, G.K.; Swenson, E.V., Interacting motion of rectilinear geostrophic vortices, Phys. Fluids, 14, 1058-1073, (1971)
[118] Morton, W.V., Vortex polygons, Proc. R. Irish Acad., Sect. A, 42, 21-29, (1935) · JFM 61.0912.03
[119] Newton, P.K., The N-vortex problem: analytical techniques, (2001), New York · Zbl 0981.76002
[120] Newton, P.K.; Ostrovskyi, V., Energy-momentum stability of icosahedral configurations of point vortices on a sphere, J. Nonlinear Sci., 22, 499-515, (2012) · Zbl 1351.37223
[121] Nikolenko, N.V., Stability of the family of cycles of dynamical systems, Izv. Vyssh. Uchebn. Zaved. Matem., 7, 63-69, (1973)
[122] Oey, L.-Y., Loop current and deep eddies, J. Phys. Oceanogr., 38, 1426-1449, (2008)
[123] Okamoto, A.; Hara, K.; Nagaoka, K.; Yoshimura, S.; Vranjes, J.; Kono, M.; Tanaka, M.Y., Experimental observation of a tripolar vortex in a plasma, Phys. Plasmas, 10, 2211-2216, (2003)
[124] Okulov, V. L., On the stability of multiple helical vortices, J. Fluid Mech., 521, 319-342, (2004) · Zbl 1065.76099
[125] Okulov, V. L.; Naumov, I.V.; Sørensen, J.N., Self-organized vortex multiplets in swirling flow, Tech. Phys. Lett., 34, 89-95, (2008)
[126] Okulov, V. L.; Sørensen, J.N., Instability of a vortex wake behind wind turbines, Dokl. Phys., 399, 775-779, (2004)
[127] Orlandi, P.; Heijst, G. J. F., Numerical simulations of tripolar vortices in 2D flows, Fluid Dyn. Res., 9, 179-206, (1992)
[128] Overman, E.A., Steady-state solutions of the Euler equations in two dimensions: 2. local analysis of limiting V-states, SIAM J.Appl. Math., 46, 765-800, (1986) · Zbl 0608.76018
[129] Patrick, G.W., Relative equilibria in Hamiltonian system: the dynamic interpretation of nonlinear stability on a reduced phase space, J. Geom. Phys., 9, 111-119, (1992) · Zbl 0761.58017
[130] Peng, S.; Robinson, W.A.; Li, S., Mechanisms for the NAO responses to the north atlantic SST tripole, J. Climate, 16, 1987-2004, (2003)
[131] Pingree, R.D.; Cann, B., Three anticyclonic slope water oceanic eddies (SWODDIES) in the southern bay of biscay in 1990, Deep Sea Res. Part 1 Oceanogr. Res. Pap., 39, 1147-1175, (1992)
[132] Polvani, L.M.; Flierl, G.R., Generalized Kirchhoff vortices, Phys. Fluids, 29, 2376-2379, (1986) · Zbl 0601.76015
[133] Polvani, L.M., Two-layer geostrophic vortex dynamics: 2.alignment and two-layer V-states, J. Fluid Mech., 225, 241-270, (1991) · Zbl 0722.76093
[134] Polvani, L.M.; Zabusky, N. J.; Flier, G.R., Two-layer geostrophic vortex dynamics: 1. upper-layer V-states and merger, J. Fluid Mech., 205, 215-242, (1989) · Zbl 0676.76093
[135] Pozharitsky, G. K., On the construction of Lyapunov functions from the integrals of the equations of the perturbed motion, J. Appl. Math. Mech., 22, 145-154, (1958)
[136] Robert, R.; Rosier, C., Long range predictability of atmospheric flows, Nonlinear Proc. Geophys., 8, 55-67, (2001)
[137] Rodríguez-Marroyo, R.; Víudez, A.; Ruiz, S., Vortex merger in oceanic tripoles, J. Phys. Oceanogr., 41, 1239-1251, (2011)
[138] Routh, E. J., A Treatise on Stability of a Given State of Motion, London: McMillan, 1877.
[139] Rubanovskii, V.N., The bifurcation and stability of steady motions, Theor. Appl. Mech., 5, 67-79, (1974) · Zbl 0287.34054
[140] Rumyantsev, V.V. and Oziraner, A. S., Motion Stability and Stabilization with Respect to Part of Variables, Moscow: Nauka, 1987 (Russian). · Zbl 0626.70021
[141] Saffman, P.G., Vortex Dynamics, Cambridge: Cambridge Univ. Press, 1992. · Zbl 0777.76004
[142] Sahai, R., Multi-polar structures in Young planetary and protoplanetary nebulae, 471-479, (2001)
[143] Salvadori, L., Un osservazione su di un criteria di stabilitá del Routh, Rend. Accad. Sci. Fis. Math. Napoli (IV), 20, 267-272, (1953) · Zbl 0058.39302
[144] Schubert, W.H.; Montgomery, M.T.; Taft, R. K.; Guinn, T.A.; Fulton, S.R.; Kossin, J.P.; Edwards, J.P., Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes, J. Atmos. Sci., 56, 1197-1223, (1999)
[145] Shteinbuch-Fridman, B.; Makarov, V.; Carton, X.; Kizner, Z., Two-layer geostrophic tripoles comprised by patches uniform potential vorticity, Phys. Fluids, 27, 11, (2015) · Zbl 1326.76034
[146] Simo, J.C.; Lewis, D.; Marsden, J. E., Stability of relative equilibria: P. 1. the educed energy-momentum method, Arch. Ration. Mech Anal., 115, 15-59, (1991) · Zbl 0738.70010
[147] Sokolovskiy, M.A., Head-on collisions of distributed hetons, Trans. Dokl. USSR Acad. Sci. Earth Sci. Sect., 306, 198-202, (1989)
[148] Sokolovskiy, M.A.; Carton, X., Baroclinic multipole formation from heton interaction, Fluid Dyn. Res., 42, 31, (2010) · Zbl 1350.76014
[149] Sokolovskiy, M.A.; Koshel, K.V.; Verron, J., Three-vortex quasi-geostrophic dynamics in a two-layer fluid: P. 1. analysis of relative and absolute motions, J. Fluid Mech., 717, 232-254, (2013) · Zbl 1284.76083
[150] Sokolovskiy, M.A.; Verron, J., Finite-core hetons: stability and interactions, J. Fluid Mech., 423, 127-154, (2000) · Zbl 0998.76031
[151] Sokolovskiy, M.A.; Verron, J., Some properties of motion of A+1 vortices in a two-layer rotating fluid, Nelin. Dinam., 2, 27-54, (2006)
[152] Sokolovskiy, M.A.; Verron, J.; Borisov, A.V. (ed.); Kozlov, V.V. (ed.); Mamaev, I. S. (ed.); Sokolovisky, M.A. (ed.), On the motion of A + 1 vortices in a two-layer rotating fluid, 481-490, (2008), Dordrecht · Zbl 1207.76040
[153] Sokolovskiy, M.A.; Verron, J., Dynamics of vortex structures in a stratified rotating fluid, (2014), Cham · Zbl 1384.86001
[154] Sutyrin, G.G.; McWilliams, J.C.; Saravanan, R., Co-rotating stationary states and vertical alignment of geostrophic vortices with thin cores, J. Fluid Mech., 357, 321-349, (1998) · Zbl 0905.76096
[155] Synge, J. L., On the motion of three vortices, Canad. J. Math., 1, 257-270, (1949) · Zbl 0032.22303
[156] Tang, Y., Nonlinear stability of vortex patches, Trans. Amer. Math. Soc., 304, 617-638, (1987) · Zbl 0636.76019
[157] Tavantzis, J.; Ting, L., The dynamics of three vortices revisited, Phys. Fluids, 31, 1392-1409, (1988) · Zbl 0657.76026
[158] Thomson, W., Floating magnets, Nature, 18, 13-14, (1878)
[159] Thomson, J. J., Treatise on the Motion of Vortex Rings, London: Macmillan, 1883, pp. 94-108.
[160] Trieling, R.R.; Heijst, G. J. F.; Kizner, Z., Laboratory experiments on multipolar vortices in a rotating fluid, Phys. Fluids, 22, 12, (2010)
[161] Heijst, G. J.F., Topography effects on vortices in a rotating fluid, Meccanica, 29, 431-451, (1994) · Zbl 0825.76885
[162] Heijst, G. J. F.; Kloosterziel, R.C., Tripolar vortices in a rotating fluid, Nature, 338, 569-571, (1989)
[163] Heijst, G. J. F.; Kloosterziel, R. C.; Williams, C.W.M., Laboratory experiments on the tripolar vortex in a rotating fluid, J. Fluid Mech., 225, 301-331, (1991)
[164] Vranjes, J., Tripolar vortex in plasma flow, Planet. Space Sci., 47, 1531-1535, (1999)
[165] Vranjes, J.; Maríc, G.; Shukla, P.K., Tripolar vortices and vortex chains in dusty plasma, Phys. Lett. A, 258, 317-322, (1999)
[166] Vranjes, J.; Okamoto, A.; Yoshimura, S.; Poedts, S.; Kono, M.; Tanaka, M.Y., Analytical description of a neutral-induced tripole vortex in a plasma, Phys. Rev. Lett., 89, 4, (2002)
[167] Wan, Y.H., The stability of rotating vortex patches, Comm. Math. Phys., 107, 1-20, (1986) · Zbl 0624.76055
[168] Ward, N.B., The exploration of certain features of tornado dynamics using a laboratory model, J. Atmos. Sci., 29, 1194-1204, (1972)
[169] Wu, H.M.; Overman, E.A. I.; Zabusky, N. J., Steady-state solutions of the Euler equations: rotating and translating V-states with limiting cases: 1. numerical algorithms and results, J. Comput. Phys., 53, 42-71, (1984) · Zbl 0524.76029
[170] Wurman, J.; Kosiba, K.; Robinson, P.; Marshall, T., The role ofmultiple-vortex tornado structure in causing storm researcher ratalities, Bull. Amer. Meteor. Soc., 95, 31-45, (2014)
[171] Xu, F.-H.; Chang, Y.-L.; Oey, L.-Y.; Hamilton, P., Loop current growth and eddy shedding using models and observations: analyses of the July 2011 eddy-shedding event, J. Phys. Oceanogr., 43, 1015-1027, (2013)
[172] Yarmchuck, E.; Gordon, M.; Packard, R., Observation of stationary vortex array in rotating superfluid helium, Phys. Rev. Lett., 43, 214-218, (1979)
[173] Yarmchuck, E.; Packard, R., Photographic studies of quantized vortex lines, J. Low Temp. Phys., 46, 479-515, (1982)
[174] Yudovich, V. I., On the stability of forced oscillations of the liquid, Dokl. Akad. Nauk SSSR, 195, 292-295, (1970)
[175] Yudovich, V. I., On the stability of self-excited oscillations in a liquid, Dokl. Akad. Nauk SSSR, 195, 574-576, (1970)
[176] Yudovich, V. I., Mathematical Problems of Hydrodynamic Stability Theory, Dissertation, Moscow: Institute for Problems of Mechanics, 1972 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.