×

zbMATH — the first resource for mathematics

A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. (English) Zbl 1346.76105
Summary: We present a new cell-centered multi-material arbitrary Lagrangian-Eulerian (ALE) scheme to solve the compressible gas dynamics equations on two-dimensional unstructured grid. Our ALE method is of the explicit time-marching Lagrange plus remap type. Namely, it involves the following three phases: a Lagrangian phase wherein the flow is advanced using a cell-centered scheme; a rezone phase in which the nodes of the computational grid are moved to more optimal positions; a cell-centered remap phase which consists of interpolating conservatively the Lagrangian solution onto the rezoned grid. The multi-material modeling utilizes either concentration equations for miscible fluids or the Volume Of Fluid (VOF) capability with interface reconstruction for immiscible fluids. The main original feature of this ALE scheme lies in the introduction of a new mesh relaxation procedure which keeps the rezoned grid as close as possible to the Lagrangian one. In this formalism, the rezoned grid is defined as a convex combination between the Lagrangian grid and the grid resulting from condition number smoothing. This convex combination is constructed through the use of a scalar parameter which is a scalar function of the invariants of the Cauchy-Green tensor over the Lagrangian phase. Regarding the cell-centered remap phase, we employ two classical methods based on a partition of the rezoned cell in terms of its overlap with the Lagrangian cells. The first one is a simplified swept face-based method whereas the second one is a cell-intersection-based method. Our multi-material ALE methodology is assessed through several demanding two-dimensional tests. The corresponding numerical results provide a clear evidence of the robustness and the accuracy of this new scheme.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics (general theory)
Software:
CAVEAT; GTEngine; ReALE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F.L. Adessio, D.E. Carroll, K.K. Dukowicz, J.N. Johnson, B.A. Kashiwa, M.E. Maltrud, H.M. Ruppel, Caveat: a computer code for fluid dynamics problems with large distortion and internal slip, Technical Report LA-10613-MS, Los Alamos National Laboratory, 1986.
[2] Ahn, H.T.; Shashkov, M.J., Multi-material interface reconstruction on generalized polyhedral meshes, J. comput. phys., 226, 2, 2096-2132, (2007) · Zbl 1388.76232
[3] Anbarlooei, H.R.; Mazaheri, K., Moment of fluid interface reconstruction method in multi-material arbitrary lagrangian – eulerian (MMALE) algorithms, Comput. methods appl. mech. eng., 198, 3782-3794, (2009) · Zbl 1230.76038
[4] A. Barlow, A new Lagrangian scheme for multimaterial cells, in: Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Computational Fluid Dynamics Conference, Swansea, Wales, 2001, pp. 262-297.
[5] Barlow, A.J., A compatible finite element multi-material ALE hydrodynamics algorithm, Int. J. numer. meth. fluids, 56, 8, 953-964, (2008) · Zbl 1169.76030
[6] T.J. Barth, D.C. Jespersen, The design and application of upwind schemes on unstructured meshes, in: AIAA paper 89-0366, 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.
[7] Ben-Artzi, M.; Falcovitz, J., Generalized Riemann problems in computational fluids dynamics, (2003), Cambridge University Press · Zbl 1017.76001
[8] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. methods appl. mech. eng., 99, 235-394, (1992) · Zbl 0763.73052
[9] J. Botsis, M. Deville, Mécanique des milieux continus: une introduction, Presses Polytechniques et Universitaires Romandes, Lausanne, 2006. · Zbl 1189.74003
[10] Bower, A.F., Applied mechanics of solids, (2009), CRC Press Boca Raton
[11] Caramana, E.J.; Burton, D.E.; Shashkov, M.J.; Whalen, P.P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. comput. phys., 146, 227-262, (1998) · Zbl 0931.76080
[12] Després, B.; Mazeran, C., Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. rational mech. anal., 178, 327-372, (2005) · Zbl 1096.76046
[13] Donea, J.; Huerta, A.; Ponthot, J.-Ph.; Rodriguez-Ferran, A., Encyclopedia of computational mechanics, volume 1: fundamentals, Chapter 14: arbitrary lagrangian – eulerian methods, (2004), John Wiley and Sons
[14] Dukowicz, J.K., A general non-iterative Riemann solver for godunov’s method, J. comput. phys., 61, 119-137, (1984) · Zbl 0629.76074
[15] Dukowicz, J.K.; Cline, M.C.; Addessio, F.S., A general topology method, J. comput. phys., 82, 29-63, (1989) · Zbl 0665.76032
[16] Dyadechko, V.; Shashkov, M., Reconstruction of multi-material interface from moment data, J. comput. phys., 227, 11, 5361-5384, (2008) · Zbl 1220.76048
[17] D. Eberly, Triangulation by ear clipping, Geometric Tools, LLC, 2008. Available at: <http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf>.
[18] S. Galera, M. Kucharik, P.-H. Maire, M. Shashkov, M. Berndt, J. Breil, Hybrid remapping (conservative interpolation) for multimaterial arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., submitted for publication. · Zbl 1408.65077
[19] Glimm, J.; Grove, J.W.; Li, X.L.; Oh, W.; Sharp, D.H., A critical analysis of rayleigh – taylor growth rates, J. comput. phys., 169, 652-677, (2001) · Zbl 1011.76057
[20] Glimm, J.; Grove, J.W.; Li, X.L.; Shyue, K.M.; Zhang, Q.; Zeng, Y., Three dimensional front tracking, SIAM J. sci. comput., 19, 703-727, (1998) · Zbl 0912.65075
[21] Haas, J.F.; Sturtevant, B., Interaction of weak-shock waves, J. fluid mech., 181, 41-76, (1987)
[22] Hirt, C.W.; Amsden, A.; Cook, J.L., An arbitrary lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 4, 227-253, (1974) · Zbl 0292.76018
[23] P. Hoch, An arbitrary Lagrangian-Eulerian strategy to solve compressible fluid flows, HAL: hal-00366858, version 1, 2009. Available at: <http://hal.archives-ouvertes.fr/docs/00/36/68/58/PDF/ale2d.pdf>.
[24] J.R. Kamm, M. Shashkov, A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamics based one the Riemann problem, Technical Report LA-UR-09-00659, Los Alamos National Laboratory, 2009. · Zbl 1364.76134
[25] J.R. Kamm, F.X. Timmes, On efficient generation of numerically robust Sedov solutions, Technical Report LA-UR-07-2849, Los Alamos National Laboratory, 2007.
[26] Knupp, P., Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. part I - A framework for surface mesh optimization, Int. J. numer. methods eng., 48, 401-420, (2000) · Zbl 0964.65140
[27] Knupp, P., Algebraic mesh quality metrics, SIAM J. sci. comput., 23, 1, 193-218, (2001) · Zbl 0996.65101
[28] Knupp, P.; Margolin, L.G.; Shashkov, M.J., Reference Jacobian optimization-based rezone strategies for arbitrary lagrangian – eulerian methods, J. comput. phys., 176, 93-128, (2002) · Zbl 1120.76340
[29] Knupp, P.; Steinberg, S., Fundamentals of grid generation, (1993), CRC Press Boca Raton
[30] Knupp, P.M., Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. part I - A framework for surface mesh optimization, Int. J. numer. methods eng., 48, 3, 401-420, (2000) · Zbl 0964.65140
[31] Kucharik, M.; Garimella, R.V.; Schofield, S.P.; Shashkov, M.J., A comparative study of interface reconstruction methods for multi-material ale simulations, J. comput. phys., 229, 7, 2432-2452, (2009) · Zbl 1423.76343
[32] Kucharik, M.; Shashkov, M., Extension of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity, Int. J. numer. methods fluids, 56, 8, 1359-1365, (2008) · Zbl 1384.65018
[33] Lindl, J.D., Inertial confinement fusion, (1998), Springer
[34] R. Loubère, P.-H. Maire, M. Shashkov, J. Breil, S. Galera, Reale: A Reconnection-based Arbitrary Lagrangian-Eulerian Method, Technical Report LA-UR-09-07844, Los Alamos National Laboratory, 2009. · Zbl 1305.76067
[35] Loubère, R.; Maire, P.-H.; Shashkov, M.; Breil, J.; Galera, S., Reale: a reconnection-based arbitrary lagrangian – eulerian method, J. comput. phys., 229, 4724-4761, (2010) · Zbl 1305.76067
[36] Luo, H.; Baum, J.D.; Löhner, R., On the computation of multi-material flows using ALE formulation, J. comput. phys., 194, 304-328, (2004) · Zbl 1136.76401
[37] Maire, P.-H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. comput. phys., 228, 2391-2425, (2009) · Zbl 1156.76434
[38] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for compressible flow problems, SIAM J. sci. comput., 29, 4, 1781-1824, (2007) · Zbl 1251.76028
[39] Maire, P.-H.; Breil, J.; Galera, S., A cell-centered arbitrary lagrangian – eulerian (ALE) method, Int. J. numer. methods fluids, 56, 1161-1166, (2008) · Zbl 1384.76044
[40] Margolin, L.G., Introduction to “an arbitrary lagrangian – eulerian computing method for all flow speeds”, J. comput. phys., 135, 2, 198-202, (1997) · Zbl 0938.76067
[41] Margolin, L.G.; Shashkov, M., Second-order sign-preserving remapping on general grids, J. comput. phys., 184, 266-298, (2003) · Zbl 1016.65004
[42] Mirtich, B., Fast and accurate computation of polygonal mass properties, J. graphics tools, 1, 31-50, (1996)
[43] Morrell, J.M.; Sweby, P.K.; Barlow, A., A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations, J. comput. phys., 1152-1180, (2007) · Zbl 1310.76096
[44] Nkonga, B., On the conservative and accurate CFD approximations for moving meshes and moving boundaries, Comput. methods appl. mech. eng., 190, 13-14, 1801-1825, (2000) · Zbl 1010.76063
[45] Quirk, James J.; Karni, S., On the dynamics of a shock-bubble interaction, J. fluid mech., 318, 129-163, (1996) · Zbl 0877.76046
[46] B. Rebourcet, ModTlisations numTriques multifluides et multiphases – liens de principe, Technical Report DO 119, CEA, 2006.
[47] Shashkov, M., Closure models for multimaterial cells in arbitrary lagrangian – eulerian hydrocodes, Int. J. numer. methods fluids, 56, 1497-1504, (2008) · Zbl 1151.76026
[48] Vachal, P.; Garimella, R.V.; Shashkov, M.J., Untangling of 2D meshes in ALE simulations, J. comput. phys., 196, 627-644, (2004) · Zbl 1109.76332
[49] A.M. Winslow, Equipotential Zoning of Two-Dimensional Meshes, Technical Report UCRL-7312, Lawrence Livermore National Laboratory, 1963.
[50] Winslow, A.M., Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh, J. comput. phys., 1, 2, 149-172, (1966), Reprinted in 135(2) (1997) 128-138 · Zbl 0254.65069
[51] Youngs, D.L., Time dependent multi-material flow with large fluid distortion, (), 273-285 · Zbl 0537.76071
[52] D.L. Youngs, Multi-mode implosion in cylindrical 3d geometry, in: 11th International Workshop on the Physics of Compressible Turbulent Mixing (IWPCTM11), Santa Fe, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.