×

Invariant domains and first-order continuous finite element approximation for hyperbolic systems. (English) Zbl 1346.65050

Summary: We propose a numerical method for solving general hyperbolic systems in any space dimension using forward Euler time stepping and continuous finite elements on nonuniform grids. The properties of the method are based on the introduction of an artificial dissipation that is defined so that any convex invariant set containing the initial data is an invariant domain for the method. The invariant domain property is proved for any hyperbolic system provided a Courant-Friedrichs-Lewy (CFL) condition holds. The solution is also shown to satisfy a discrete entropy inequality for every admissible entropy of the system. The method is formally first-order accurate in space and can be made high-order in time by using strong stability preserving algorithms. This technique extends to continuous finite elements the work of D. Hoff [Math. Comput. 33, 1171–1193 (1979; Zbl 0447.65056); Trans. Am. Math. Soc. 289, 591–610 (1985; Zbl 0535.35056)], and H. Frid [Arch. Ration. Mech. Anal. 160, No. 3, 245–269 (2001; Zbl 0993.65096)].

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws

Software:

HE-E1GODF
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Ainsworth, {\it Pyramid algorithms for Bernstein-Bézier finite elements of high, nonuniform order in any dimension}, SIAM J. Sci. Comput., 36 (2014), pp. A543-A569, http://dx.doi.org/10.1137/130914048 doi:10.1137/ 130914048. · Zbl 1322.65102
[2] S. Bianchini and A. Bressan, {\it Vanishing viscosity solutions of nonlinear hyperbolic systems}, Ann. of Math. (2), 161 (2005), pp. 223-342. · Zbl 1082.35095
[3] A. Bressan, {\it Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem,} Oxford Lecture Ser. Math. Appl. 20, Oxford University Press, Oxford, UK, 2000. · Zbl 0997.35002
[4] A. J. Chorin, {\it Random choice solution of hyperbolic systems}, J. Comput. Phys., 22 (1976), pp. 517-533. · Zbl 0354.65047
[5] K. N. Chueh, C. C. Conley, and J. A. Smoller, {\it Positively invariant regions for systems of nonlinear diffusion equations}, Indiana Univ. Math. J., 26 (1977), pp. 373-392. · Zbl 0368.35040
[6] P. Colella, {\it Multidimensional upwind methods for hyperbolic conservation laws}, J. Comput. Phys., 87 (1990), pp. 171-200, http://dx.doi.org/10.1016/0021-9991(90)90233-Q doi:10.1016/0021-9991(90)90233-Q. · Zbl 0694.65041
[7] M. G. Crandall and A. Majda, {\it Monotone difference approximations for scalar conservation laws}, Math. Comp., 34 (1980), pp. 1-21, http://dx.doi.org/10.2307/2006218 doi:10.2307/2006218. · Zbl 0423.65052
[8] C. M. Dafermos, {\it Hyperbolic Conservation Laws in Continuum Physics}, Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Sciences] 325, Springer-Verlag, Berlin, 2000, http://dx.doi.org/10.1007/3-540-29089-3_14 doi:10.1007/3-540-29089-3_14 . · Zbl 0940.35002
[9] H. Frid, {\it Maps of convex sets and invariant regions for finite-difference systems of conservation laws}, Arch. Ration. Mech. Anal., 160 (2001), pp. 245-269, http://dx.doi.org/10.1007/s002050100166 doi:10.1007/s00205010016. · Zbl 0993.65096
[10] J.-L. Guermond and M. Nazarov, {\it A maximum-principle preserving \({C}^0\) finite element method for scalar conservation equations}, Comput. Methods Appl. Mech. Engrg., 272 (2013), pp. 198-213. · Zbl 1296.65133
[11] J.-L. Guermond and B. Popov, {\it Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations}, J. Comput. Phys., 321 (2016), pp. 908-926. · Zbl 1349.76769
[12] J.-L. Guermond and B. Popov, {\it Error estimates of a first-order Lagrange finite element technique for nonlinear scalar conservation equations}, SIAM J. Numer. Anal., 54 (2016), pp. 57-85, http://dx.doi.org/10.1137/140990863 doi:10.1137/140990863. · Zbl 1336.65165
[13] D. Hoff, {\it A finite difference scheme for a system of two conservation laws with artificial viscosity}, Math. Comp., 33 (1979), pp. 1171-1193. · Zbl 0447.65056
[14] D. Hoff, {\it Invariant regions for systems of conservation laws}, Trans. Amer. Math. Soc., 289 (1985), pp. 591-610, http://dx.doi.org/10.2307/2000254 doi:10.2307/2000254. · Zbl 0535.35056
[15] A. Jameson, {\it Positive schemes and shock modelling for compressible flows}, Internat. J. Numer. Methods Fluids, 20 (1995), pp. 743-776, http://dx.doi.org/10.1002/fld.1650200805 doi:10.1002/fld.1650200805. · Zbl 0837.76055
[16] A. Kurganov and E. Tadmor, {\it Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers}, Numer. Methods Partial Differential Equations, 18 (2002), pp. 584-608, http://dx.doi.org/10.1002/num.10025 doi:10.1002/num.10025. · Zbl 1058.76046
[17] A. Kurganov, G. Petrova, and B. Popov, {\it Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws}, SIAM J. Sci. Comput., 29 (2007), pp. 2381-2401, http://dx.doi.org/10.1137/040614189 doi:10.1137/040614189. · Zbl 1154.65356
[18] D. Kuzmin and S. Turek, {\it Flux correction tools for finite elements}, J. Comput. Phys., 175 (2002), pp. 525-558. · Zbl 1028.76023
[19] D. Kuzmin, R. Löhner, and S. Turek, eds., {\it Flux-Corrected Transport. Principles, Algorithms, and Applications}, Sci. Comput., Springer, Berlin, 2005.
[20] M.-J. Lai and L. L. Schumaker, {\it Spline Functions on Triangulations}, Encyclopedia Math. Appl. 110, Cambridge University Press, Cambridge, UK, 2007, http://dx.doi.org/10.1017/CBO9780511721588 doi:10.1017/ CBO9780511721588. · Zbl 1185.41001
[21] P. D. Lax, {\it Hyperbolic systems of conservation laws}. II, Comm. Pure Appl. Math., 10 (1957), pp. 537-566. · Zbl 0081.08803
[22] P.-L. Lions, B. Perthame, and P. E. Souganidis, {\it Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates}, Comm. Pure Appl. Math., 49 (1996), pp. 599-638. · Zbl 0853.76077
[23] R. Liska and B. Wendroff, {\it Comparison of several difference schemes on 1D and 2D test problems for the Euler equations}, SIAM J. Sci. Comput., 25 (2003), pp. 995-1017, http://dx.doi.org/10.1137/S1064827502402120 doi:10.1137/ S1064827502402120. · Zbl 1096.65089
[24] T. P. Liu, {\it The Riemann problem for general systems of conservation laws}, J. Differential Equations, 18 (1975), pp. 218-234. · Zbl 0297.76057
[25] T. Nishida, {\it Global solution for an initial boundary value problem of a quasilinear hyperbolic system}, Proc. Japan Acad., 44 (1968), pp. 642-646. · Zbl 0167.10301
[26] S. Osher, {\it The Riemann problem for nonconvex scalar conservation laws and Hamilton-Jacobi equations}, Proc. Amer. Math. Soc., 89 (1983), pp. 641-646, http://dx.doi.org/10.2307/2044598 doi:10.2307/2044598. · Zbl 0555.35086
[27] B. Perthame and C.-W. Shu, {\it On positivity preserving finite volume schemes for Euler equations}, Numer. Math., 73 (1996), pp. 119-130, http://dx.doi.org/10.1007/s002110050187 doi:10.1007/s002110050187. · Zbl 0857.76062
[28] J. Smoller, {\it Shock Waves and Reaction-Diffusion Equations}, Grundlehren Math. Wiss. [Fundamental Principles of Mathematical Science] 258, Springer-Verlag, New York, Berlin, 1983. · Zbl 0508.35002
[29] E. F. Toro, {\it Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction}, 3rd ed., Springer-Verlag, Berlin, 2009. · Zbl 1227.76006
[30] R. Young, {\it The \(p\)-system. I. The Riemann problem}, in The Legacy of the Inverse Scattering Transform in Applied Mathematics (South Hadley, MA, 2001), Contemp. Math. 301, Amer. Math. Soc., Providence, RI, 2002, pp. 219-234, http://dx.doi.org/10.1090/conm/301/05166 doi:10.1090/conm/301/05166. · Zbl 1035.35078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.