×

zbMATH — the first resource for mathematics

Optimal one-dimensional coverage by unreliable sensors. (English) Zbl 1346.49024

MSC:
49J55 Existence of optimal solutions to problems involving randomness
93E20 Optimal stochastic control
60K30 Applications of queueing theory (congestion, allocation, storage, traffic, etc.)
90B18 Communication networks in operations research
68M10 Network design and communication in computer systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. Bullo, R. Carli, and P. Frasca, Gossip coverage control for robotic networks: Dynamical systems on the space of partitions, SIAM J. Control Optim., 50 (2012), pp. 419–447. · Zbl 1253.37089
[2] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Networks, Appl. Math. Ser., Princeton University Press, Princeton, NJ, 2009.
[3] J. Cortés, Deployment of unreliable robotic sensor network for spatial estimation, Systems Control Lett., 61 (2012), pp. 41–49. · Zbl 1250.93084
[4] J. Cortés and F. Bullo, Coordination and geometric optimization via distributed dynamical systems, SIAM J. Control Optim., 44 (2005), pp. 1543–1574. · Zbl 1108.37058
[5] J. Cortés, S. Martínez, T. Karatas, and F. Bullo, Coverage control for mobile sensing networks, IEEE Trans. Robotics Automation, 20 (2004), pp. 243–255.
[6] H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed., Wiley, New York, 2003. · Zbl 1053.62060
[7] Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations: Applications and algorithms, SIAM Rev., 41 (1999), pp. 637–676. · Zbl 0983.65021
[8] P. Erdös and P. Révész, On the length of the longest head run, in Topics in Information Theory, Colloquia Mathematical Society János Bolyai, Keszthely, Hungary, 1975, pp. 219–228.
[9] M. Franceschetti and R. Meester, Random Networks for Communication, Cambridge University Press, Cambridge, UK, 2007. · Zbl 1143.82001
[10] P. Frasca and F. Garin, On optimal coverage with unreliable sensors, in Proceedings of the IFAC Workshop on Estimation and Control of Networked Systems, Koblenz, Germany, 2013, pp. 38–42.
[11] A. Ghosh and S. K. Das, Coverage and connectivity issues in wireless sensor networks: A survey, Pervasive Mobile Comput., 4 (2008), pp. 303–334.
[12] L. Gordon, M. F. Schilling, and M. S. Waterman, An extreme value theory for long head runs, Probab. Theory Related Fields, 72 (1986), pp. 279–287. · Zbl 0587.60031
[13] R. Graham and J. Cortés, Asymptotic optimality of multicenter Voronoi configurations for random field estimation, IEEE Trans. Automat. Control, 54 (2009), pp. 153–158. · Zbl 1367.62277
[14] P. Hall, Introduction to the Theory of Coverage Processes, Wiley, New York, 1988. · Zbl 0659.60024
[15] A. Howard, M. Matarić, and G. S. Sukhatme, Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem, in Distributed Autonomous Robotic Systems 5, Springer, New York, 2002, pp. 299–308.
[16] S. Hutchinson and T. Bretl, Robust optimal deployment of mobile sensor networks, in Proceedings of the IEEE International Conference on Robotics and Automation, 2012, pp. 671–676.
[17] S. Kumar, T. H. Lai, and J. Balogh, On \(k\)-coverage in a mostly sleeping sensor network, in Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, ACM, 2004, pp. 144–158.
[18] J. Le Ny and G. J. Pappas, Adaptive deployment of mobile robotic networks, IEEE Trans. Automat. Control, 58 (2013), pp. 654–666. · Zbl 1369.93419
[19] N. E. Leonard and A. Olshevsky, Nonuniform coverage control on the line, IEEE Trans. Automat. Control, 58 (2013), pp. 2743–2755. · Zbl 1369.93420
[20] L. Li, B. Zhang, and J. Zheng, A study on one-dimensional k-coverage problem in wireless sensor networks, Wireless Commun. Mobile Comput., 13 (2013), pp. 1–11.
[21] J. R. Marden and A. Wierman, Distributed welfare games, Oper. Res., 61 (2013), pp. 155–168. · Zbl 1268.91012
[22] M. Ouimet and J. Cortés, Hedonic coalition formation for optimal deployment, Automatica, 49 (2013), pp. 3234–3245. · Zbl 1358.93015
[23] H. Pishro-Nik, Analysis of finite unreliable sensor grids, in Proceedings of the 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, IEEE, 2006, pp. 1–10.
[24] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer, New York, 1993. · Zbl 0759.68037
[25] S. Shakkottai, R. Srikant, and N. B. Shroff, Unreliable sensor grids: Coverage, connectivity and diameter, Ad Hoc Networks, 3 (2005), pp. 702–716.
[26] M. Younis and K. Akkaya, Strategies and techniques for node placement in wireless sensor networks: A survey, Ad Hoc Networks, 6 (2008), pp. 621–655.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.