×

zbMATH — the first resource for mathematics

Multicontrast MRI reconstruction with structure-guided total variation. (English) Zbl 1346.47006

MSC:
47A52 Linear operators and ill-posed problems, regularization
49M30 Other numerical methods in calculus of variations (MSC2010)
65J22 Numerical solution to inverse problems in abstract spaces
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
92C55 Biomedical imaging and signal processing
Software:
BrainWeb; DLMRI-Lab
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, Fast image recovery using variable splitting and constrained optimization, IEEE Trans. Image Process., 19 (2010), pp. 2345–2356, http://dx.doi.org/10.1109/TIP.2010.2047910 doi:10.1109/TIP.2010.2047910. · Zbl 1371.94018
[2] S. R. Arridge, V. Kolehmainen, and M. J. Schweiger, Reconstruction and regularisation in optical tomography, in Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation, Pisa, Italy, 2007.
[3] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Appl. Math. Sci. 147, Springer, New York, 2002. · Zbl 1109.35002
[4] I. Bayram and M. E. Kamasak, A directional total variation, IEEE Signal Process. Lett., 19 (2012), pp. 265–269, http://dx.doi.org/10.1109/LSP.2012.2220349 doi:10.1109/LSP.2012.2220349.
[5] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202, http://dx.doi.org/10.1137/080716542doi:10.1137/080716542. · Zbl 1175.94009
[6] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 2419–2434, http://dx.doi.org/10.1109/TIP.2009.2028250 doi:10.1109/TIP.2009.2028250. · Zbl 1371.94049
[7] B. Berkels, M. Burger, M. Droske, O. Nemitz, and M. Rumpf, Cartoon extraction based on anisotropic image classification, in Vision, Modeling, and Visualization Proceedings, IOS Press, Amsterdam, 2006, pp. 293–300.
[8] B. Bilgic, V. K. Goyal, and E. Adalsteinsson, Multi-contrast reconstruction with Bayesian compressed sensing, Magnetic Resonance in Medicine, 66 (2011), pp. 1601–1615, http://dx.doi.org/10.1002/mrm.22956 doi:10.1002/mrm.22956.
[9] J. E. Bowsher, H. Yuan, L. W. Hedlund, T. G. Turkington, G. Akabani, A. Badea, W. C. Kurylo, C. T. Wheeler, G. P. Cofer, M. W. Dewhirst, and G. A. Johnson, Utilizing MRI information to estimate F18-FDG distributions in rat flank tumors, in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, IEEE, Washington, DC, 2004, pp. 2488–2492, http://dx.doi.org/10.1109/NSSMIC.2004.1462760 doi:10.1109/NSSMIC.2004.1462760.
[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Machine Learning, 3 (2010), pp. 1–122, http://dx.doi.org/10.1561/2200000016 doi:10.1561/2200000016. · Zbl 1229.90122
[11] E. J. Candès, J. K. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509, http://dx.doi.org/10.1109/TIT.2005.862083 doi:10.1109/TIT.2005.862083. · Zbl 1231.94017
[12] E. J. Candès, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59 (2006), pp. 1207–1223, http://dx.doi.org/10.1002/cpa.20124 doi:10.1002/cpa.20124. · Zbl 1098.94009
[13] T.-C. Chang, L. He, and T. Fang, MR image reconstruction from sparse radial samples using Bregman iteration, Proc. Intl. Soc. Mag. Res. Medicine, 4 (2006), p. 696.
[14] C. Chen, Y. Li, and J. Huang, Calibrationless parallel MRI with joint total variation regularization, in Proceeding of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 2013, pp. 106–114, http://dx.doi.org/10.1007/978-3-642-40760-4_14 doi:10.1007/978-3-642-40760-4_14.
[15] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. B. Pike, and A. C. Evans, BrainWeb: Online interface to a 3D MRI simulated brain database, NeuroImage, 5 (1997), p. 425.
[16] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306, http://dx.doi.org/10.1109/TIT.2006.871582 doi:10.1109/TIT.2006.871582. · Zbl 1288.94016
[17] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293–318, http://dx.doi.org/10.1007/BF01581204 doi:10.1007/BF01581204. · Zbl 0765.90073
[18] M. Ehrhardt, P. Markiewicz, M. Liljeroth, A. Barnes, V. Kolehmainen, J. Duncan, L. Pizarro, D. Atkinson, B. Hutton, S. Ourselin, K. Thielemans, and S. R. Arridge, PET reconstruction with an anatomical MRI prior using parallel level sets, IEEE Trans. Medical Imaging, (2016), p. 1, http://dx.doi.org/10.1109/TMI.2016.2549601 doi:10.1109/TMI.2016.2549601.
[19] M. J. Ehrhardt, Joint Reconstruction for Multi-modality Imaging with Common Structure, Ph.D. thesis, University College London, London, UK, 2015, http://discovery.ucl.ac.uk/id/eprint/1469770.
[20] M. J. Ehrhardt and S. R. Arridge, Vector-valued image processing by parallel level sets, IEEE Trans. Image Process., 23 (2014), pp. 9–18, http://dx.doi.org/10.1109/TIP.2013.2277775 doi:10.1109/TIP.2013.2277775. · Zbl 1374.94094
[21] M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton, and S. R. Arridge, Joint reconstruction of PET-MRI by exploiting structural similarity, Inverse Problems, 31 (2015), 015001, http://dx.doi.org/10.1088/0266-5611/31/1/015001 doi:10.1088/0266-5611/31/1/015001. · Zbl 1320.92057
[22] M. J. Ehrhardt, K. Thielemans, L. Pizarro, P. Markiewicz, D. Atkinson, S. Ourselin, B. F. Hutton, and S. R. Arridge, Joint reconstruction of PET-MRI by parallel level sets, in IEEE Nuclear Science Symposium and Medical Imaging Conference, 2014, http://dx.doi.org/10.1109/NSSMIC.2014.7430895 doi:10.1109/NSSMIC.2014.7430895. · Zbl 1320.92057
[23] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press, Cambridge, UK, 2012.
[24] V. Estellers, S. Soatto, and X. Bresson, Adaptive regularization with the structure tensor, IEEE Trans. Image Process., 24 (2015), pp. 1777–1790, http://dx.doi.org/10.1109/TIP.2015.2409562 doi:10.1109/TIP.2015.2409562. · Zbl 1408.94166
[25] F. Fang, F. Li, C. Shen, and G. Zhang, A variational approach for pan-sharpening, IEEE Trans. Image Process., 22 (2013), pp. 2822–2834, http://dx.doi.org/10.1109/TIP.2013.2258355 doi:10.1109/TIP.2013.2258355.
[26] J. A. Fessler and D. C. Noll, Iterative image reconstruction in MRI with separate magnitude and phase regularization, in Proceedings of the IEEE International Symposium on Biomedical Imaging, IEEE, Washington, DC, 2004, pp. 209–212, http://dx.doi.org/10.1109/ISBI.2004.1398511 doi:10.1109/ISBI.2004.1398511.
[27] M. Grasmair, Locally adaptive total variation regularization, in SSVM 2009, Lecture Notes in Comput. Sci. 5567, Springer, Berlin, 2009, pp. 331–342, http://dx.doi.org/10.1007/978-3-642-02256-2_28 doi:10.1007/978-3-642-02256-2_28.
[28] M. Grasmair and F. Lenzen, Anisotropic total variation filtering, Appl. Math. Optim., 62 (2010), pp. 323–339, http://dx.doi.org/10.1007/s00245-010-9105-x doi:10.1007/s00245-010-9105-x. · Zbl 1205.35152
[29] M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and A. Haase, Generalized autocalibrating partially parallel acquisitions (GRAPPA), Magnetic Resonance in Medicine, 47 (2002), pp. 1202–1210, http://dx.doi.org/10.1002/mrm.10171 doi:10.1002/mrm.10171.
[30] J. Huang, C. Chen, and L. Axel, Fast multi-contrast MRI reconstruction, Magnetic Resonance Imaging, 32 (2014), pp. 1344–1352, http://dx.doi.org/10.1016/j.mri.2014.08.025 doi:10.1016/j.mri.2014.08.025.
[31] J. P. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, Inverse problems with structural prior information, Inverse Problems, 15 (1999), pp. 713–729, http://dx.doi.org/10.1088/0266-5611/15/3/306 doi:10.1088/0266-5611/15/3/306. · Zbl 0949.65144
[32] F. Knoll, K. Bredies, T. Pock, and R. Stollberger, Second order total generalized variation (TGV) for MRI, Magnetic Resonance in Medicine, 65 (2011), pp. 480–491, http://dx.doi.org/10.1002/mrm.22595 doi:10.1002/mrm.22595.
[33] F. Knoll, Y. Dong, C. Langskammer, M. Hintermüller, and R. Stollberger, Total variation denoising with spatially dependent regularization, in Proc. Intl. Soc. Mag. Reson. Med., 18 (2010), p. 5088.
[34] D. J. Larkman and R. G. Nunes, Parallel magnetic resonance imaging, Phys. Med. Biol., 52 (2007), pp. R15–55, http://dx.doi.org/10.1088/0031-9155/52/7/R01 doi:10.1088/0031-9155/52/7/R01.
[35] R. M. Leahy and X. Yan, Incorporation of anatomical MR data for improved functional imaging with PET, in Information Processing in Medical Imaging, Springer, New York, 1991, pp. 105–120, http://dx.doi.org/10.1007/BFb0033746 doi:10.1007/BFb0033746.
[36] F. Lenzen and J. Berger, Solution-driven adaptive total variation regularization, in Proceedings of SSVM, Lecture Notes in Comput. Sci. 9087, Springer, Berlin, 2015, pp. 203–215, http://dx.doi.org/10.1007/978-3-642-24785-9 doi:10.1007/978-3-642-24785-9.
[37] Z.-P. Liang and P. C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective, IEEE Press Series in Biomedical Engineering, Wiley–IEEE, New York, 1999.
[38] S. G. Lingala, Y. Hu, E. Dibella, and M. Jacob, Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-T SLR, IEEE Trans. Medical Imaging, 30 (2011), pp. 1042–1054, http://dx.doi.org/10.1109/TMI.2010.2100850 doi:10.1109/TMI.2010.2100850.
[39] M. Lustig, D. L. Donoho, and J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), pp. 1182–1195, http://dx.doi.org/10.1002/mrm.21391 doi:10.1002/mrm.21391.
[40] D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. L. Sunshine, J. L. Duerk, and M. A. Griswold, Magnetic resonance fingerprinting, Nature, 495 (2013), pp. 187–192, http://dx.doi.org/10.1038/nature11971 doi:10.1038/nature11971.
[41] J. Maclaren, M. Herbst, O. Speck, and M. Zaitsev, Prospective motion correction in brain imaging: A review, Magnetic Resonance in Medicine, 69 (2013), pp. 621–636, http://dx.doi.org/10.1002/mrm.24314 doi:10.1002/mrm.24314.
[42] A. Macovski, Noise in MRI, Magnetic Resonance in Medicine, 36 (1996), pp. 494–497, http://dx.doi.org/10.1002/mrm.1910360327 doi:10.1002/mrm.1910360327.
[43] D. W. McRobbie, E. A. Moore, M. J. Graves, and M. R. Prince, MRI—from Picture to Proton, Cambridge University Press, Cambridge, UK, 2006.
[44] E. R. McVeigh, R. M. Henkelman, and M. J. Bronskill, Noise and filtration in magnetic resonance imaging, Medical Physics, 12 (1985), pp. 586–591, http://dx.doi.org/10.1118/1.595679 doi:10.1118/1.595679.
[45] M. Möller, T. Wittman, A. L. Bertozzi, and M. Burger, A variational approach for sharpening high dimensional images, SIAM J. Imaging Sci., 5 (2012), pp. 150–178, http://dx.doi.org/10.1137/100810356doi:10.1137/100810356. · Zbl 1258.94018
[46] F. Odille, P.-A. Vuissoz, P.-Y. Marie, and J. Felblinger, Generalized reconstruction by inversion of coupled systems (GRICS) applied to free-breathing MRI, Magnetic Resonance in Medicine, 60 (2008), pp. 146–157, http://dx.doi.org/10.1002/mrm.21623 doi:10.1002/mrm.21623.
[47] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, SENSE: Sensitivity encoding for fast MRI, Magnetic Resonance in Medicine, 42 (1999), pp. 952–962, http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5-952::AID-MRM16-3.0.CO;2-S doi:10.1002/(SICI)1522-2594(199911)42:5-952::AID-MRM16-3.0.CO;2-S.
[48] S. Ravishankar and Y. Bresler, MR image reconstruction from highly undersampled K-space data by dictionary learning, IEEE Trans. Medical Imaging, 30 (2011), pp. 1028–1041, http://dx.doi.org/10.1109/TMI.2010.2090538 doi:10.1109/TMI.2010.2090538.
[49] R. T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics and Physics, Princeton University Press, Princeton, NJ, 1970. · Zbl 0193.18401
[50] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259–268, http://dx.doi.org/10.1016/0167-2789(92)90242-F doi:10.1016/0167-2789(92)90242-F. · Zbl 0780.49028
[51] D. K. Sodickson, L. Feng, F. Knoll, M. Cloos, N. Ben-Eliezer, L. Axel, H. Chandarana, T. Block, and R. Otazo, The rapid imaging renaissance: Sparser samples, denser dimensions, and glimmerings of a grand unified tomography, in Proceedings of SPIE, Vol. 9417, SPIE, Bellingham, WA, 2015, 94170G, http://dx.doi.org/10.1117/12.2085033 doi:10.1117/12.2085033.
[52] B. Trémoulhéac, N. Dikaios, D. Atkinson, and S. R. Arridge, Dynamic MR image reconstruction—separation from undersample (k-t)-space via low-rank plus sparse prior, IEEE Trans. Medical Imaging, 33 (2014), pp. 1689–1701, http://dx.doi.org/10.1109/TMI.2014.2321190 doi: 10.1109/TMI.2014.2321190.
[53] M. Uecker, P. Lai, M. J. Murphy, P. Virtue, M. Elad, J. M. Pauly, S. S. Vasanawala, and M. Lustig, ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA, Magnetic Resonance in Medicine, 71 (2014), pp. 990–1001, http://dx.doi.org/10.1002/mrm.24751 doi:10.1002/mrm.24751.
[54] H. Vogel, A better way to construct the sunflower head, Math. Biosci., 44 (1979), pp. 179–189, http://dx.doi.org/10.1016/0025-5564(79)90080-4 doi:10.1016/0025-5564(79)90080-4.
[55] K. Vunckx, A. Atre, K. Baete, A. Reilhac, C. M. Deroose, K. Van Laere, and J. Nuyts, Evaluation of three MRI-based anatomical priors for quantitative PET brain imaging, IEEE Trans. Medical Imaging, 31 (2012), pp. 599–612, http://dx.doi.org/10.1109/TMI.2011.2173766 doi:10.1109/TMI.2011.2173766.
[56] Q. Wang, M. Zenge, H. E. Cetingul, E. Mueller, and M. S. Nadar, Novel sampling strategies for sparse MR image reconstruction, Proc. Intl. Soc. Mag. Res. Medicine, 55 (2014), p. 4249.
[57] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), pp. 600–612, http://dx.doi.org/10.1109/TIP.2003.819861 doi:10.1109/TIP.2003.819861.
[58] S. Winkelmann, T. Schaeffter, T. Koehler, H. Eggers, and O. Doessel, An optimal radial profile order based on the golden ratio for time-resolved MRI, IEEE Trans. Medical Imaging, 26 (2007), pp. 68–76, http://dx.doi.org/10.1109/TMI.2006.885337 doi:10.1109/TMI.2006.885337.
[59] M. V. W. Zibetti and A. R. De Pierro, Separate magnitude and phase regularization in MRI with incomplete data: Preliminary results, in Proceedings of the IEEE International Symposium on Biomedical Imaging, IEEE, Washington, DC, 2010, pp. 736–739, http://dx.doi.org/10.1109/ISBI.2010.5490069 doi:10.1109/ISBI.2010.5490069.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.