×

zbMATH — the first resource for mathematics

Some formal relationships among soft sets, fuzzy sets, and their extensions. (English) Zbl 1346.03046
Summary: We prove that every hesitant fuzzy set on a set \(E\) can be considered either a soft set over the universe \([0, 1]\) or a soft set over the universe \(E\). Concerning converse relationships, for denumerable universes we prove that any soft set can be considered even a fuzzy set. Relatedly, we demonstrate that every hesitant fuzzy soft set can be identified with a soft set, thus a formal coincidence of both notions is brought to light. Coupled with known relationships, our results prove that interval type-2 fuzzy sets and interval-valued fuzzy sets can be considered as soft sets over the universe \([0, 1]\). Altogether we contribute to a more complete understanding of the relationships among various theories that capture vagueness and imprecision.

MSC:
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aktaş, H.; Çağman, N., Soft sets and soft groups, Inf. Sci., 177, 2726-2735, (2007) · Zbl 1119.03050
[2] Aliprantis, C.; Border, K., Infinite dimensional analysis: A Hitchhiker’s guide, (2006), Springer · Zbl 1156.46001
[3] Basu, K.; Deb, R.; Pattanaik, P. K., Soft sets: an ordinal formulation of vagueness with some applications to the theory of choice, Fuzzy Sets Syst., 45, 1, 45-58, (1992) · Zbl 0749.90006
[4] Bedregal, B.; Reiser, R.; Bustince, H.; López-Molina, C.; Torra, V., Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms, Inf. Sci., 255, 82-99, (2014) · Zbl 1320.68178
[5] Bustince, H.; Barrenechea, E.; Pagola, M.; Fernández, J.; Xu, Z.; Bedregal, B.; Montero, J.; Hagras, H.; Herrera, F.; De Baets, B., A historical account of types of fuzzy sets and their relationships, IEEE Trans. Fuzzy Syst., (2015), in press
[6] Bustince, H.; Burillo, P., Vague sets are intuitionistic fuzzy sets, Fuzzy Sets Syst., 79, 3, 403-405, (1996) · Zbl 0871.04006
[7] Bustince, H.; Fernández, J.; Hagras, H.; Herrera, F.; Pagola, M.; Barrenechea, E., Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: towards a wider view on their relationship, IEEE Trans. Fuzzy Syst., 23, 1876-1882, (2015)
[8] Dempster, A., Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat., 38, 2, 325-339, (1967) · Zbl 0168.17501
[9] Deschrijver, G.; Kerre, E. E., On the relationship between some extensions of fuzzy set theory, Fuzzy Sets Syst., 133, 2, 227-235, (2003) · Zbl 1013.03065
[10] Deschrijver, G.; Kerre, E. E., On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision, Inf. Sci., 177, 8, 1860-1866, (2007) · Zbl 1121.03074
[11] Dubois, D.; Prade, H., Gradualness, uncertainty and bipolarity: making sense of fuzzy sets, Fuzzy Sets Syst., 192, 3-24, (2012) · Zbl 1238.03044
[12] Feng, F.; Li, Y., Soft subsets and soft product operations, Inf. Sci., 232, 44-57, (2013) · Zbl 1293.03019
[13] Feng, F.; Liu, X.; Leoreanu-Fotea, V.; Jun, Y. B., Soft sets and soft rough sets, Inf. Sci., 181, 6, 1125-1137, (2011) · Zbl 1211.68436
[14] Goguen, J., L-fuzzy sets, J. Math. Anal. Appl., 18, 1, 145-174, (1967) · Zbl 0145.24404
[15] Grattan-Guinness, I., Fuzzy membership mapped onto intervals and many-valued quantities, Math. Log. Q., 22, 149-160, (1976) · Zbl 0334.02011
[16] Kerre, E. E., A first view on the alternatives of fuzzy set theory, (Reusch, B.; Temme, K.-H., Computational Intelligence in Theory and Practice, (2001), Springer-Verlag Heidelberg), 55-72 · Zbl 1007.03046
[17] Klir, G.; Yuan, B., Fuzzy sets and fuzzy logic, (1995), Prentice Hall New Jersey
[18] Li, Z.; Xie, T., Roughness of fuzzy soft sets and related results, Int. J. Comput. Intell. Syst., 8, 2, 278-296, (2015)
[19] Li, Z.; Zheng, D.; Hao, J., L-fuzzy soft sets based on complete Boolean lattices, Comput. Math. Appl., 64, 8, 2558-2574, (2012) · Zbl 1268.03074
[20] Liang, Q.; Mendel, J., Interval type-2 fuzzy logic systems: theory and design, IEEE Trans. Fuzzy Syst., 8, 5, 535-550, (2000)
[21] Maji, P.; Biswas, R.; Roy, A., Fuzzy soft sets, J. Fuzzy Math., 9, 589-602, (2001) · Zbl 0995.03040
[22] Maji, P.; Biswas, R.; Roy, A., An application of soft sets in a decision making problem, Comput. Math. Appl., 44, 1077-1083, (2002) · Zbl 1044.90042
[23] Maji, P.; Biswas, R.; Roy, A., Soft set theory, Comput. Math. Appl., 45, 555-562, (2003) · Zbl 1032.03525
[24] Molodtsov, D., Soft set theory - first results, Comput. Math. Appl., 37, 19-31, (1999) · Zbl 0936.03049
[25] Rodríguez, R.; Martínez, L.; Torra, V.; Xu, Z.; Herrera, F., Hesitant fuzzy sets: state of the art and future directions, Int. J. Intell. Syst., 29, 495-524, (2014)
[26] Torra, V., Hesitant fuzzy sets, Int. J. Intell. Syst., 25, 6, 529-539, (2010) · Zbl 1198.03076
[27] Wang, F.; Li, X.; Chen, X., Hesitant fuzzy soft set and its applications in multicriteria decision making, J. Appl. Math., (2014), 10 pp
[28] Willard, S., General topology, (2004), Dover · Zbl 1052.54001
[29] Xia, M.; Xu, Z., Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason., 52, 395-407, (2011) · Zbl 1217.68216
[30] Yao, Y., A comparative study of fuzzy sets and rough sets, Inf. Sci., 109, 227-242, (1998) · Zbl 0932.03064
[31] Zadeh, L., Fuzzy sets, Inf. Control, 8, 338-353, (1965) · Zbl 0139.24606
[32] Zhu, B.; Xu, Z., Extended hesitant fuzzy sets, Technol. Econ. Dev. Econ., (2015), in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.