×

zbMATH — the first resource for mathematics

A Gaussian graphical model approach to climate networks. (English) Zbl 1345.86008
Summary: Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.
©2014 American Institute of Physics

MSC:
86A10 Meteorology and atmospheric physics
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
90B15 Stochastic network models in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albert, R.; Barabási, A., Rev. Mod. Phys., 74, 47, (2002) · Zbl 1205.82086
[2] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D., Phys. Rep., 424, 175, (2006) · Zbl 1371.82002
[3] Lauritzen, S. L., Graphical Models, 17, (1996), Oxford University Press: Oxford University Press, Oxford · Zbl 0907.62001
[4] Tsonis, A.; Roebber, P., Physica A, 333, 497, (2004)
[5] Tsonis, A.; Swanson, K.; Roebber, P., B. Am. Meteorol. Soc., 87, 585, (2006)
[6] Tsonis, A.; Swanson, K.; Wang, G., J. Climate, 21, 2990, (2008)
[7] Tsonis, A.; Swanson, K., Phys. Rev. Lett., 100, 228502, (2008)
[8] Yamasaki, K.; Gozolchiani, A.; Havlin, S., Phys. Rev. Lett., 100, 228501, (2008)
[9] Gozolchiani, A.; Yamasaki, K.; Gazit, O.; Havlin, S., Europhys. Lett., 83, 28005, (2008)
[10] Donges, J.; Zou, Y.; Marwan, N.; Kurths, J., Eur. Phys. J. Spec. Top., 174, 157, (2009)
[11] Donges, J.; Zou, Y.; Marwan, N.; Kurths, J., Europhys. Lett., 87, 48007, (2009)
[12] Ge-Li, W.; Tsonis, A. A., Chin. Phys. B, 18, 5091, (2009)
[13] Yamasaki, K.; Gozolchiani, A.; Havlin, S., Prog. Theor. Phys. Supp., 179, 178, (2009) · Zbl 1175.86004
[14] Barreiro, M.; Marti, A.; Masoller, C., Chaos, 21, 013101, (2011)
[15] Gozolchiani, A.; Havlin, S.; Yamasaki, K., Phys. Rev. Lett., 107, 148501, (2011)
[16] Donges, J. F.; Schultz, H. C.; Marwan, N.; Zou, Y.; Kurths, J., Eur. Phys. J. B, 84, 635, (2011)
[17] Steinhaeuser, K.; Chawla, N.; Ganguly, A., Stat. Anal. Data Min., 4, 497, (2011)
[18] Steinhaeuser, K.; Ganguly, A. R.; Chawla, N. V., Clim. Dynam., 39, 889, (2012)
[19] Paluš, M.; Hartman, D.; Hlinka, J.; Vejmelka, M., Nonlinear Proc. Geophys., 18, 751, (2011)
[20] Ebert-Uphoff, I.; Deng, Y., J. Climate, 25, 5648, (2012)
[21] Ebert-Uphoff, I.; Deng, Y., Geophy. Res. Lett., 39, L19701, (2012)
[22] Runge, J.; Heitzig, J.; Marwan, N.; Kurths, J., Phys. Rev. E, 86, 061121, (2012)
[23] Runge, J.; Heitzig, J.; Petoukhov, V.; Kurths, J., Phys. Rev. Lett., 108, 258701, (2012)
[24] Runge, J.; Petoukhov, V.; Kurths, J., J. Climate, 27, 720, (2014)
[25] Dahlhaus, R.; Eichler, M.; Sandkühler, J., J. Neurosci. Methods, 77, 93, (1997)
[26] Schindler, K. A.; Bialonski, S.; Horstmann, M. T.; Elger, C. E.; Lehnertz, K., Chaos, 18, 033119, (2008)
[27] Bullmore, E.; Sporns, O., Nat. Rev. Neurosci., 10, 186, (2009)
[28] Jalili, M.; Knyazeva, M. G., J. Integr. Neurosci., 10, 213, (2011)
[29] Tong, A.; Lesage, G.; Bader, G.; Ding, H.; Xu, H.; Xin, X.; Young, J.; Berriz, G.; Brost, R.; Chang, M., Science, 303, 808, (2004)
[30] Bansal, M.; Belcastro, V.; Ambesi-Impiombato, A.; Di Bernardo, D., Mol. Syst. Biol., 3, 78, (2007)
[31] Friedman, N.; Linial, M.; Nachman, I.; Pe’er, D., J. Comput. Biol., 7, 601, (2000)
[32] Mukherjee, S.; Hill, S., Bioinformatics, 27, 994, (2011)
[33] Havlin, S.; Kenett, D.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S., Eur. Phys. J. Spec. Top., 214, 273, (2012)
[34] Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J., B. Am. Meteorol. Soc., 77, 437, (1996)
[35] Majewski, D.; Liermann, D.; Prohl, P.; Ritter, B.; Buchhold, M.; Hanisch, T.; Paul, G.; Wergen, W.; Baumgardner, J., Mon. Weather Rev., 130, 319, (2002)
[36] Hastie, T.; Tibshirani, R.; Friedman, J.; Franklin, J., Math. Intell., 27, 83, (2005)
[37] Wainwright, M.; Jordan, M., Mach. Learn., 1, 1, (2008) · Zbl 1193.62107
[38] Kishino, H.; Waddell, P., Genome Inform. Ser., 11, 83, (2000)
[39] de la Fuente, A.; Bing, N.; Hoeschele, I.; Mendes, P., Bioinfromatics, 20, 3565, (2004)
[40] Wille, A.; Zimmermann, P.; Vranová, E.; Fürholz, A.; Laule, O.; Bleuler, S.; Hennig, L.; Prelic, A.; Von Rohr, P.; Thiele, L., Genome Biol., 5, R92, (2004)
[41] Dobra, A.; Hans, C.; Jones, B.; Nevins, J.; Yao, G.; West, M., J. Multivariate Anal., 90, 196, (2004) · Zbl 1047.62104
[42] Schäfer, J.; Strimmer, K., Stat. Appl. Genet. Mol. Biol., 4, 32, (2005)
[43] Krämer, N.; Schäfer, J.; Boulesteix, A., BMC Bioinform., 10, 384, (2009)
[44] Menéndez, P.; Kourmpetis, Y.; Ter Braak, C.; van Eeuwijk, F., PLoS One, 5, e14147, (2010)
[45] Besag, J., J. Roy. Stat. Soc. B Met., 36, 192, (1974)
[46] Shipley, B., Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference, (2002), Cambridge University Press: Cambridge University Press, Cambridge
[47] Meinshausen, N.; Bühlmann, P., Ann. Stat., 34, 1436, (2006) · Zbl 1113.62082
[48] Friedman, J.; Hastie, T.; Tibshirani, R., Biostatistics, 9, 432, (2008) · Zbl 1143.62076
[49] Banerjee, O.; El Ghaoui, L.; d’Aspremont, A., J. Mach. Learn. Res., 9, 485, (2008)
[50] Wu, X.; Ye, Y.; Subramanian, K. R., ACM SIGKDD Workshop on Data Mining in Bioinformatics, 3, 63, (2003), ACM: ACM, New York
[51] Pedlosky, J., Geophysical Fluid Dynamics, 1, (1982), Springer: Springer, New York
[52] Hoskins, B.; Simmons, A.; Andrews, D., Q. J. Roy. Meteor. Soc., 103, 553, (1977)
[53] Longuet-Higgins, M., Proc. R. Soc. London, Ser. A, 279, 446, (1964)
[54] Haltiner, G. J.; Williams, R. T., Numerical Prediction and Dynamic Meteorology, 2, (1980), Wiley: Wiley, New York
[55] Kalnay, E., Atmospheric Modeling, Data Assimilation, and Predictability, (2003), Cambridge University Press: Cambridge University Press, Cambridge
[56] Watts, D.; Strogatz, S., Nature, 393, 440, (1998) · Zbl 1368.05139
[57] Gill, A. E., Atmosphere-Ocean Dynamics, 30, (1982), Academic Press: Academic Press, San Diego, California
[58] Frankignoul, C.; Hasselmann, K., Tellus, 29, 289, (1977)
[59] Sporns, O.; Zwi, J. D., Neuroinformatics, 2, 145, (2004)
[60] Bialonski, S.; Horstmann, M.; Lehnertz, K., Chaos, 20, 013134, (2010)
[61] Hlinka, J.; Hartman, D.; Paluš, M., Chaos, 22, 033107, (2012)
[62] Paluš, M., Phys. Rev. Lett., 101, 134101, (2008)
[63] Wallace, J. M.; Gutzler, D. S., Mon. Weather Rev., 109, 784, (1981)
[64] Hlinka, J.; Hartman, D.; Vejmelka, M.; Runge, J.; Marawan, N.; Kurths, J.; Paluš, M., Entropy, 15, 2023, (2013) · Zbl 1296.62218
[65] Risken, H., The Fokker-Planck Equation, (1984), Springer: Springer, Berlin · Zbl 0546.60084
[66] Yuan, M.; Lin, Y., Biometrika, 94, 19, (2007) · Zbl 1142.62408
[67] Fan, J.; Feng, Y.; Wu, Y., Ann. Appl. Stat., 3, 521, (2009) · Zbl 1166.62040
[68] Peng, J.; Wang, P.; Zhou, N.; Zhu, J., J. Am. Stat. Assoc., 104, 735, (2009) · Zbl 1388.62046
[69] Schelter, B.; Winterhalder, M.; Dahlhaus, R.; Kurths, J.; Timmer, J., Phys. Rev. Lett., 96, 208103, (2006)
[70] Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M.; Bhattacharya, J., Phys. Rep., 441, 1, (2007)
[71] Frenzel, S.; Pompe, B., Phys. Rev. Lett., 99, 204101, (2007)
[72] Vakorin, V. A.; Krakovska, O. A.; McIntosh, A. R., J. Neurosci. Methods, 184, 152, (2009)
[73] Nawrath, J.; Romano, M. C.; Thiel, M.; Kiss, I. Z.; Wickramasinghe, M.; Timmer, J.; Kurths, J.; Schelter, B., Phys. Rev. Lett., 104, 038701, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.