zbMATH — the first resource for mathematics

Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise. (English) Zbl 1345.60051
The authors consider the problem of approximation of the solutions of stochastic integral equations with Lévy noise
\[ \begin{split} X_\varepsilon(t)= X(0)+ \varepsilon\int^t_0 b(s, X_\varepsilon(s-))\,ds+ \sqrt{\varepsilon} \int^t_0 \sigma(s,X_\varepsilon(s-))\,dB(s)\\+ \sqrt{\varepsilon}\int^t_0 \int_{|x|<c} F(s, X_\varepsilon(s-), x)\,\widetilde N(ds, dx)\end{split} \] by the solution of the corresponding solution of the simplified stochastic integral equations with Lévy noise
\[ \begin{split} Z_\varepsilon(t)= X(0)+ \varepsilon\int^t_0\overline b(Z_\varepsilon(s-))\,ds+ \sqrt{\varepsilon}\int^t_0\overline\sigma(Z_\varepsilon(s-))\,dB(s)\\ +\sqrt{\varepsilon} \int^t_0 \int_{|x|<c}\overline F(Z_\varepsilon(s-), x)\,\overline N(ds, dx),\end{split} \] where \(X(0)=\xi\) is the initial value \(n\)-dimensional random vector with \(E[|\xi|^2]<\infty\), \(b(t,\bullet)\) and \(F(t,\bullet,x)\) are given vector functions, \(\sigma(t,\bullet)\) is an \((n\times r)\)-matrix, \(b(t,y)\), \(\sigma(t,y)\) and \(F(t,y,x)\) are continuous in \(y\) for each fixed \(t\in[0,T]\) and satisfy quadratic (non-Lipschitz) conditions for all \(y\). Moreover, \(\overline b(y)\), \(\overline\sigma(y)\) and \(\overline F(y,x)\) are measurable and satisfy, with the corresponding functions \(b(t,y)\), \(\sigma(t, y)\) and \(F(t,y,x)\), a linear (Lipschitz) condition for the drift functions and quadratic conditions for the other functions. Also, \(\varepsilon\in(0,\varepsilon_0]\) is a positive parameter with \(\varepsilon_0\) a fixed number. The convergence of the solutions of these equations in mean-square and in probability is shown in this paper.
These results are extended to the case of stochastic functional integral equations with Lévy noise. Unfortunately, there are no examples showing the applicability of the obtained results.

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
60H20 Stochastic integral equations
60G51 Processes with independent increments; Lévy processes
60F05 Central limit and other weak theorems
60F17 Functional limit theorems; invariance principles
34A45 Theoretical approximation of solutions to ordinary differential equations
45R05 Random integral equations
34K50 Stochastic functional-differential equations
Full Text: DOI
[1] Øksendal, Stochastic Differential Equations (2005)
[2] Arnold, Stochastic Differential Equations, Theory and Applications (1974) · Zbl 0278.60039
[3] Friedman, Stochastic Differential Equations and Applications (2006)
[4] Gard, Introduction to Stochastic Differential Equation (1988) · Zbl 0628.60064
[5] Mao, Stochastic Differential Equations and Applications (1997)
[6] Rassias, Stochastic Functional Differential Equations and Applications (2008)
[7] Introduction to the Theory and Applications of Functional Differential Equations 463 (1999)
[8] Hale, Introduction to Functional Differential Equations (1993) · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[9] Bouchaud, Anomalous diffusion in disordered media: statistic mechanics, models and physical applications, Physics Reports 195 pp 127– (1990) · doi:10.1016/0370-1573(90)90099-N
[10] Situ, Theory of Stochastic Differential Equations with Jumps and Applications (2005) · Zbl 1070.60002
[11] Sato, Lévy Processes and Infinitely Divisible Distributions (1999) · Zbl 0973.60001
[12] Yonezawa, Introduction to focused session on ’anomalous relaxation’, Journal of Non-Crystalline Solids 198 pp 503– (1996) · doi:10.1016/0022-3093(95)00726-1
[13] Herrchen MP Stochastic modeling of dispersive diffusion by non-Gaussian noise Doctorial Thesis 2001
[14] Shlesinger, Lévy Flights and Related Topics in Physics 450 (1995) · Zbl 0823.00016 · doi:10.1007/3-540-59222-9
[15] Stoyanov, The averaging method for a class of stochastic differential equations, Ukrainian Mathematical Journal 2 (10) pp 186– (1974)
[16] Kolomiets, Averaging of stochastic systems of integral-differential equations with Poisson noise, Ukrainian Mathematical Journal 2 (43) pp 242– (1991) · Zbl 0735.60060 · doi:10.1007/BF01060515
[17] Xu, An averaging principle for stochastic differential delay equations with fractional Brownian motion, Abstract and Applied Analysis 2014 pp Article ID 4791– (2014) · doi:10.1155/2014/479195
[18] Xu, A limit theorem for the solutions of slow-fast systems with fractional Brownian motion, Theoretical and Applied Mechanics Letters 4 (1) pp 013003– (2014) · doi:10.1063/2.1401303
[19] Xu, An averaging principle for stochastic dynamical systems with Lévy noise, Physica D 240 pp 1395– (2011) · Zbl 1236.60060 · doi:10.1016/j.physd.2011.06.001
[20] Taniguchi, Successive approximations to solutions of stochastic differential equations, Journal of Differential Equations 96 pp 152– (1992) · Zbl 0744.34052 · doi:10.1016/0022-0396(92)90148-G
[21] Luo, The existence and uniqueness for non-Lipschitz stochastic neutral delay evolution equations driven by Poisson jumps, Stochastics and Dynamics 9 (1) pp 135– (2009) · Zbl 1167.60336 · doi:10.1142/S0219493709002592
[22] Yamada, On the successive approximation of solutions of stochastic differential equations, Journal of Mathematics of Kyoto University 21 (3) pp 501– (1981) · Zbl 0484.60053
[23] Cao, Successive approximations of infinite dimensional SDEs with jump, Stochastics and Dynamics 5 (04) pp 609– (2005) · Zbl 1082.60048 · doi:10.1142/S0219493705001584
[24] Song, Exponential stability of equilibria of differential equations with time-dependent delay and non-Lipschitz nonlinearity, Nonlinear Analysis: Real World Applications 11 (5) pp 3628– (2010) · Zbl 1206.34096 · doi:10.1016/j.nonrwa.2010.01.009
[25] Wang, Successive approximation to solutions of stochastic differential equations with jumps in local non-Lipschitz conditions, Applied Mathematics and Computation 225 pp 142– (2013) · Zbl 1334.60105 · doi:10.1016/j.amc.2013.09.026
[26] Xu, Stochastic averaging principle for dynamical systems with fractional Brownian motion, AIMS Discrete and Continuous Dynamical Systems-Series B 19 (4) pp 1197– (2014) · Zbl 1314.60122 · doi:10.3934/dcdsb.2014.19.1197
[27] Applebaum, Asymptotic stability of stochastic differential equations driven by Lévy noise, Journal of Applied Probability 46 (4) pp 1116– (2009) · Zbl 1185.60058 · doi:10.1239/jap/1261670692
[28] Xu, Stochastic stability for nonlinear systems driven by Lévy noise, Nonlinear Dynamics 68 pp 7– (2012) · Zbl 1243.93126 · doi:10.1007/s11071-011-0199-8
[29] Applebaum, Lévy Processes and Stochastic Calculus (2009) · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[30] Xu Y Pei B Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.