×

Darboux transformations for CMV matrices. (English) Zbl 1345.42029

In this monograph, the Darboux transformations for CMV matrices are explained having as first guideline the Darboux transformations for Jacobi matrices. The subjacent technical difficulties are carefully presented motivating the specific terminology used throughout the text, such like Hessenberg type matrices and zig-zag bases. Special attention is given to the measure corresponding to the Darboux transformation of a CMV matrix and to a discussion of the inverse of the Darboux transformations for CMV matrices.
A thorough comparison between the Darboux transformation of a Jacobi and a CMV matrix is provided reviewing both classical results and recent contributions (e.g. [M. Derevyagin et al., Constr. Approx. 36, No. 3, 513–535 (2012; Zbl 1259.42018)]).
In the latter sections, the authors explore the CMV matrices lying in different contexts as for instance “the QR interpretation of Christoffel transformations on the unit circle based on CMV matrices ”, together with further extensions.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
15A23 Factorization of matrices

Citations:

Zbl 1259.42018
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aharonov, Y.; Davidovich, L.; Zagury, N., Quantum random walks, Phys. Rev. A, 48, 2, 1687-1690 (1993)
[2] Álvarez-Fernández, C.; Mañas, M., Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies, Adv. Math., 240, 132-193 (2013) · Zbl 1293.30077
[3] Ammar, G. S.; Gragg, W. B., Schur Flows for Orthogonal Hessenberg Matrices, Hamiltonian and Gradient Flows, Algorithms and Control, Fields Inst. Commun., vol. 3, 27-34 (1994), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0815.65057
[4] Ammar, G. S.; Gragg, W. B.; Reichel, L., On the eigenproblem for orthogonal matrices, (Proc. 25th Conference on Decision and Control. Proc. 25th Conference on Decision and Control, Athens, 1986 (1986)), 1963-1966, New York
[5] Bueno, M. I.; Marcellán, F., Darboux transformations and perturbations of linear functionals, Linear Algebra Appl., 384, 215-242 (2004) · Zbl 1055.42016
[6] Bueno, M. I.; Marcellán, F., Polynomial perturbations of bilinear functionals and Hessenberg matrices, Linear Algebra Appl., 414, 64-83 (2006) · Zbl 1134.42015
[7] Buhmann, M. D.; Iserles, A., On orthogonal polynomials transformed by the QR algorithm, J. Comput. Appl. Math., 43, 1-2, 117-134 (1992) · Zbl 0764.65008
[8] Bunse-Gerstner, A.; Elsner, L., Schur parameters pencils for the solution of the unitary eigenproblem, Linear Algebra Appl., 154/156, 741-778 (1991) · Zbl 0741.65029
[9] Cantero, M. J.; Grünbaum, F. A.; Moral, L.; Velázquez, L., Matrix-valued Szegő polynomials and quantum random walks, Comm. Pure Appl. Math., 63, 4, 464-507 (2010) · Zbl 1186.81036
[11] Cantero, M. J.; Moral, L.; Velázquez, L., Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl., 362, 29-56 (2003) · Zbl 1022.42013
[12] Cantero, M. J.; Moral, L.; Velázquez, L., Minimal representations of unitary operators and orthogonal polynomials on the unit circle, Linear Algebra Appl., 408, 40-65 (2005) · Zbl 1072.42020
[13] Cooke, R. G., Infinite Matrices and Sequence Spaces (2014), Dover Publ.: Dover Publ. New York · Zbl 0132.28901
[14] Darboux, G., Sur la represention sphériques de surfaces, Comp. Hebd. Rend. Acad. Sci., 94, 1343-1345 (1882)
[15] Darboux, G., Sur une proposition relative aux équations linéaires, Comp. Hebd. Rend. Acad. Sci., 94, 1456-1459 (1882) · JFM 14.0264.01
[16] Daruis, L.; Hernández, J.; Marcellán, F., Spectral transformations for Hermitian Toeplitz matrices, J. Comput. Appl. Math., 202, 2, 155-176 (2007) · Zbl 1131.42301
[17] Delsarte, P.; Genin, Y., The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Process., 34, 3, 470-478 (1986)
[18] Derevyagin, M.; García-Ardila, J. C.; Marcellán, F., Multiple Geronimus transformations, Linear Algebra Appl., 454, 158-183 (2014) · Zbl 1295.42007
[19] Derevyagin, M.; Marcellán, F., A note on the Geronimus transformation and Sobolev orthogonal polynomials, Numer. Algorithms, 67, 2, 271-287 (2014) · Zbl 1306.42043
[20] Derevyagin, M.; Vinet, L.; Zhedanov, A., CMV matrices and little and big -1 Jacobi polynomials, Constr. Approx., 36, 3, 513-535 (2012) · Zbl 1259.42018
[21] Elhay, S.; Kautsky, J., Jacobi matrices for measures modified by a rational factor, Numer. Algorithms, 6, 3-4, 205-227 (1994) · Zbl 0799.65049
[22] Faybusovich, L.; Gekhtman, M., On Schur flows, J. Phys. A, 32, 25, 4671-4680 (1999) · Zbl 0952.37055
[23] Galant, D., An implementation of Christoffel’s theorem in the theory of orthogonal polynomials, Math. Comp., 25, 111-113 (1971) · Zbl 0219.65017
[24] Galant, D., Algebraic methods for modified orthogonal polynomials, Math. Comp., 59, 200, 541-546 (1992) · Zbl 0767.33005
[25] Garza, L.; Hernández, J.; Marcellán, F., Spectral transformations of measures supported on the unit circle and the Szegő transformation, Numer. Algorithms, 49, 1-4, 169-185 (2008) · Zbl 1169.42009
[26] Garza, L.; Hernández, J.; Marcellán, F., Orthogonal polynomials and measures on the unit circle. The Geronimus transformations, J. Comput. Appl. Math., 233, 5, 1220-1231 (2010) · Zbl 1179.42020
[27] Garza, L.; Marcellán, F., Linear spectral transformations and Laurent polynomials, Mediterr. J. Math., 6, 3, 273-289 (2009) · Zbl 1189.42011
[28] Gautschi, W., An algorithmic implementation of the generalized Christoffel theorem, (Hämmerlin, G., Numerical Integration. Numerical Integration, Internat. Ser. Numer. Math., vol. 57 (1982), Birkhäuser: Birkhäuser Basel), 89-106
[29] Gautschi, W., The interplay between classical analysis and (numerical) linear algebra—a tribute to Gene H. Golub, Electron. Trans. Numer. Anal., 13, 119-147 (2002) · Zbl 1065.65049
[30] Gekhtman, M.; Nenciu, I., Multi-Hamiltonian structure for the finite defocusing Ablowitz-Ladik equation, Comm. Pure Appl. Math., 62, 2, 147-182 (2009) · Zbl 1153.37410
[31] Geronimus, Ya. L., Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl., 1954, 104 (1954), 79 pp · Zbl 0056.10303
[32] Golinskiĭ, L. B., Schur flows and orthogonal polynomials on the unit circle, Mat. Sb.. Mat. Sb., Sb. Math., 197, 7-8, 1145-1165 (2006), (in Russian), translation in · Zbl 1140.37019
[33] Golub, G. H.; Kautsky, J., Calculation of Gauss quadratures with multiple free and fixed knots, Numer. Math., 41, 2, 147-163 (1983) · Zbl 0525.65010
[34] Gragg, W. B., The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math., 16, 1, 1-8 (1986) · Zbl 0623.65041
[35] Grenander, U.; Szegő, G., Toeplitz Forms and Their Applications (1984), Chelsea Publishing Co.: Chelsea Publishing Co. New York · Zbl 0611.47018
[36] Grünbaum, F. A., The Darboux process and a noncommutative bispectral problem: some explorations and challenges, (Geometric Aspects of Analysis and Mechanics. Geometric Aspects of Analysis and Mechanics, Progr. Math., vol. 292 (2011), Birkhäuser/Springer: Birkhäuser/Springer New York), 161-177 · Zbl 1263.34022
[37] Grünbaum, F. A.; Haine, L., Orthogonal polynomials satisfying differential equations: the role of the Darboux transformation, (Symmetries and Integrability of Difference Equations. Symmetries and Integrability of Difference Equations, Estérel, PQ, 1994. Symmetries and Integrability of Difference Equations. Symmetries and Integrability of Difference Equations, Estérel, PQ, 1994, CRM Proc. Lecture Notes, vol. 9 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 143-154 · Zbl 0865.33008
[38] Grünbaum, F. A.; Haine, L., Bispectral Darboux transformations: an extension of the Krall polynomials, Int. Math. Res. Not., 1997, 8, 359-392 (1997) · Zbl 1125.37321
[39] Grünbaum, F. A.; Haine, L.; Horozov, E., Some functions that generalize the Krall-Laguerre polynomials, J. Comput. Appl. Math., 106, 2, 271-297 (1999) · Zbl 0926.33007
[40] (Harnard, J.; Kasman, A., The Bispectral Problem. The Bispectral Problem, Montreal, PQ, 1997. The Bispectral Problem. The Bispectral Problem, Montreal, PQ, 1997, CRM Proc. Lecture Notes, vol. 14 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0885.00050
[41] Hirota, R.; Tsujimoto, S.; Imai, T., Difference scheme of soliton equations, (Future Directions of Nonlinear Dynamics in Physical and Biological Systems. Future Directions of Nonlinear Dynamics in Physical and Biological Systems, Lyngby, 1992. Future Directions of Nonlinear Dynamics in Physical and Biological Systems. Future Directions of Nonlinear Dynamics in Physical and Biological Systems, Lyngby, 1992, NATO Adv. Sci. Inst. Ser. B Phys., vol. 312 (1993), Plenum: Plenum New York), 7-15 · Zbl 0900.35332
[42] Humet, M.; Van Barel, M., Algorithms for the Geronimus transformation for orthogonal polynomials on the unit circle, J. Comput. Appl. Math., 267, 195-217 (2014) · Zbl 1293.65065
[43] Infeld, L., On a new treatment of some eigenvalue problems, Phys. Rev., 59, 9, 737-747 (1941) · Zbl 0025.05001
[44] Infeld, L.; Hull, T. E., The factorization method, hydrogen intensities and related problems, Phys. Rev., 74, 8, 905-909 (1948) · Zbl 0033.04105
[45] Infeld, L.; Hull, T. E., The factorization method, Rev. Modern Phys., 23, 1, 21-68 (1951) · Zbl 0043.38602
[46] Ismail, M. E.H.; Li, X., On sieved orthogonal polynomials IX: orthogonality on the unit circle, Pacific J. Math., 153, 2, 289-297 (1992) · Zbl 0771.33007
[47] Ismail, M. E.H.; Witte, N. S., Discriminants and functional equations for polynomials orthogonal on the unit circle, J. Approx. Theory, 110, 2, 200-228 (2001) · Zbl 0982.33004
[48] Kac, M.; van Moerbeke, P., On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices, Adv. Math., 16, 160-169 (1975) · Zbl 0306.34001
[49] Kato, T., Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., vol. 132 (1976), Springer-Verlag: Springer-Verlag Berlin-New York
[50] Kautsky, J.; Golub, G. H., On the calculation of Jacobi matrices, Linear Algebra Appl., 52/53, 439-455 (1983) · Zbl 0512.65030
[51] Killip, R.; Nenciu, I., Matrix models for circular ensembles, Int. Math. Res. Not., 2004, 50, 2665-2701 (2004) · Zbl 1255.82004
[52] Killip, R.; Nenciu, I., CMV: the unitary analogue of Jacobi matrices, Comm. Pure Appl. Math., 60, 8, 1148-1188 (2007) · Zbl 1128.15012
[53] Kubrusly, C. S., The Elements of Operator Theory (2011), Birkhäuser/Springer: Birkhäuser/Springer New York · Zbl 1231.47001
[54] Li, L.-C.; Nenciu, I., The periodic defocusing Ablowitz-Ladik equation and the geometry of Floquet CMV matrices, Adv. Math., 231, 6, 3330-3388 (2012) · Zbl 1300.37047
[55] Maddox, I. J., Infinite Matrices of Operators, Lecture Notes in Math., vol. 786 (1980), Springer: Springer Berlin · Zbl 0424.40002
[56] Marcellán, F.; Hernández, J., Christoffel transforms and Hermitian linear functionals, Mediterr. J. Math., 2, 4, 451-458 (2005) · Zbl 1121.42017
[57] Marcellán, F.; Sansigre, G., Orthogonal polynomials on the unit circle: symmetrization and quadratic decomposition, J. Approx. Theory, 65, 1, 109-119 (1991) · Zbl 0721.42015
[58] Matveev, V. B.; Salle, M. A., Differential-difference evolution equations. II. Darboux transformation for the Toda lattice, Lett. Math. Phys., 3, 5, 425-429 (1979) · Zbl 0441.35004
[59] Matveev, V. B.; Salle, M. A., Darboux Transformations and Solitons, Springer Ser. Nonlin. Dyn. (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0744.35045
[60] Meyer, D. A., From quantum cellular automata to quantum lattice gases, J. Stat. Phys., 85, 5-6, 551-574 (1996) · Zbl 0952.37501
[61] Mielnik, B.; Rosas-Ortiz, O., Factorization: little or great algorithm?, J. Phys. A, 37, 43, 10007-10035 (2004) · Zbl 1064.81025
[62] Moutard, T., Sur la construction des èquations de la forme \(\frac{1}{z} \frac{d^2 z}{d x d y} = \lambda(x, y)\), qui admettent une intégrale générale explicite, J. de l’Ecole Poly., 45, 1-11 (1878)
[63] Mukaihira, A.; Nakamura, Y., Schur flow for orthogonal polynomials on the unit circle and its integrable discretization, J. Comput. Appl. Math., 139, 1, 75-94 (2002) · Zbl 1005.37038
[64] Nenciu, I., Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle, Int. Math. Res. Not., 2005, 11, 647-686 (2005) · Zbl 1081.37047
[65] Nenciu, I., CMV matrices in random matrix theory and integrable systems: a survey, J. Phys. A, 39, 28, 8811-8822 (2006) · Zbl 1098.15019
[66] Nikishin, E. M.; Sorokin, V. N., Rational Approximations and Orthogonality, Transl. Math. Monogr., vol. 92 (1991), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0733.41001
[67] Schrödinger, E., A method of determining quantum-mechanical eigenvalues and eigenfunctions, Proc. R. Ir. Acad. Sect. A, 46, 9-16 (1940) · Zbl 0023.08602
[68] Schrödinger, E., Further studies on solving eigenvalue problems by factorization, Proc. R. Ir. Acad. Sect. A, 46, 183-206 (1941) · Zbl 0063.06818
[69] Shivakumar, P. N.; Sivakumar, K. C., A review of infinite matrices and their applications, Linear Algebra Appl., 430, 4, 976-998 (2009) · Zbl 1168.15023
[70] Simon, B., Orthogonal Polynomials on the Unit Circle. Part 1 and 2, Vol. 1 and 2, Amer. Math. Soc. Colloq. Publ. Series, vol. 54 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[71] Simon, B., OPUC on one foot, Bull. Amer. Math Soc., 42, 4, 431-460 (2005) · Zbl 1108.42005
[72] Simon, B., CMV matrices: five years after, J. Comput. Appl. Math., 208, 1, 120-154 (2007) · Zbl 1125.15027
[73] Simon, B., Zeros of OPUC and long time asymptotics of Schur and related flows, Inverse Probl. Imaging, 1, 1, 189-215 (2007) · Zbl 1125.35098
[74] Spiridonov, V.; Vinet, L.; Zhedanov, A., Spectral transformations, self-similar reductions and orthogonal polynomials, J. Phys. A, 30, 21, 7621-7637 (1997) · Zbl 0926.39006
[75] Spiridonov, V.; Zhedanov, A., Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials, Methods Appl. Anal., 2, 4, 369-398 (1995) · Zbl 0859.33017
[76] Szegő, G., Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23 (1939), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI, 4th edition, 1975 · JFM 65.0286.02
[77] Teschl, G., Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surveys Monogr., vol. 72 (2000), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1056.39029
[78] Toda, M., Theory of Nonlinear Lattices, Springer Ser. Solid-State Sci., vol. 20 (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0694.70001
[79] Wall, S. H., Analytic Theory of Continued Fractions (1948), D. Van Nostrand Company, Inc.: D. Van Nostrand Company, Inc. New York, NY · Zbl 0035.03601
[80] Wang, T.-L.; Gragg, W. B., Convergence of the shifted QR algorithm for unitary Hessenberg matrices, Math. Comp., 71, 240, 1473-1496 (2002) · Zbl 1003.65031
[81] Watkins, D. S., Some perspectives on the eigenvalue problem, SIAM Rev., 35, 3, 430-471 (1993) · Zbl 0786.65032
[82] Weidmann, J., Linear Operators in Hilbert Spaces, Grad. Texts in Math., vol. 68 (1980), Springer-Verlag: Springer-Verlag New York-Berlin
[83] Williamson, J., Quasi-unitary matrices, Duke Math. J., 3, 4, 715-725 (1937) · JFM 63.0845.01
[84] Yoon, G. J., Darboux transforms and orthogonal polynomials, Bull. Korean Math. Soc., 39, 3, 359-376 (2002) · Zbl 1025.33005
[85] Zhedanov, A., Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math., 85, 1, 67-86 (1997) · Zbl 0918.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.