Non-autonomous lattice systems with switching effects and delayed recovery. (English) Zbl 1345.34128

The authors study the following non-autonomous lattice dynamical system with a discontinuous nonlinear term, and a special type of recoverable delay \[ \begin{aligned} &\dot u_i=\nu(u_{i-1}-2u_i+u_{i+1})+f_i(t,u_i)\cdot {\mathcal \chi}[L_i-\max_{-\theta\leq s\leq 0}u_i(t+s)], \quad i\in \mathbb Z, \quad t>t_0, \\ &u_i(\tau)=\phi_i(\tau-t_0), \quad \forall \tau\in [t_0-\theta, t_0], \quad i\in \mathbb Z, \quad t_0\in \mathbb R, \end{aligned} \] where \(\nu =1/R>0\) is the coupling coefficient, \(R\) is the intercellular resistance, \({\mathcal \chi}\) is the Heaviside function, and for each \(i\in \mathbb Z u_i\in \mathbb R\) represents the membrane potential of the cell at the \(i\)-th active site, \(L_i\in \mathbb R\) is the threshold triggering, the switch-off at the \(i\)-th site, \(u_i(t+\cdot)\in C([-\theta,0],\mathbb R)\) is the segment of \(u_i\) on time interval \([t-\theta,t]\) where \(\theta\) is a positive constant, and \(f_i \in C(\mathbb R\times\mathbb R, \mathbb R)\) satisfies proper dissipative conditions.
The problem is formulated as an evolution inclusion with delays and the existence of weak and strong solutions is established. The long term behavior is investigated and the existence of a pullback attractor is proved.


34K31 Lattice functional-differential equations
34K05 General theory of functional-differential equations
34K09 Functional-differential inclusions
34K30 Functional-differential equations in abstract spaces
92C37 Cell biology
Full Text: DOI


[1] Abdallah, A. Y., Uniform global attractors for first order non-autonomous lattice dynamical systems, Proc. Amer. Math. Soc., 138, 3219-3228, (2010) · Zbl 1204.37077
[2] Abdallah, A. Y., Uniform exponential attractors for first order non-autonomous lattice dynamical systems, J. Differential Equations, 10, 1-16, (2011)
[3] Afraimovich, V. S.; Nekorkin, V. I., Chaos of traveling waves in a discrete chain of diffusively coupled maps, Internat. J. Bifur. Chaos, 4, 631-637, (1994) · Zbl 0870.58049
[4] Banaś, J., On measures of noncompactness in Banach spaces, Comment. Math. Univ. Carolin., 21, 131-143, (1980) · Zbl 0438.47051
[5] Bates, P. W.; Chmaj, A., On a discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150, 281-368, (1999) · Zbl 0956.74037
[6] Bates, P. W.; Lu, K.; Wang, B., Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11, 143-153, (2001) · Zbl 1091.37515
[7] Bell, J., Some threshold results for models of myelinated nerves, Math. Biosci., 54, 181-190, (1981) · Zbl 0454.92009
[8] Bell, J.; Cosner, C., Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quart. Appl. Math., 42, 1-14, (1984) · Zbl 0536.34050
[9] Beyn, W. J.; Pilyugin, S. Y., Attractors for reaction diffusion systems on infinite lattices, J. Dynam. Differential Equations, 15, 485-515, (2003) · Zbl 1041.37040
[10] Caraballo, T.; Kloeden, P. E., Nonautonomous attractors for integro-differential evolution equations, Discrete Contin. Dyn. Syst., 2, 17-36, (2009) · Zbl 1185.45016
[11] Caraballo, T.; Morillas, F.; Valero, J., On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems, Discrete Contin. Dyn. Syst., 34, 51-77, (2014) · Zbl 1323.34087
[12] Caraballo, T.; Morillas, F.; Valero, J., Attractors for non-autonomous retarded lattice dynamical systems, Nonauton. Dyn. Syst., 2, 31-51, (2015) · Zbl 1329.34119
[13] Carpio, A.; Bonilla, L. L., Pulse propagation in discrete systems of coupled excitable cells, SIAM J. Appl. Math., 63, 619-635, (2002) · Zbl 1035.34044
[14] Castaing, C.; Valadier, M., Convex analysis and measurable multifunction, Lecture Notes in Mathematics, (1977), Springer Berlin · Zbl 0346.46038
[15] Chua, L. O.; Roska, T., The CNN paradigm, IEEE Trans. Circuits Syst., 40, 147-156, (1993) · Zbl 0800.92041
[16] Chua, L. O.; Yang, L., Cellular neural networks: theory, IEEE Trans. Circuits Syst., 35, 1257-1272, (1988) · Zbl 0663.94022
[17] Chua, L. O.; Yang, L., Cellular neural networks: applications, IEEE Trans. Circuits Syst., 35, 1273-1290, (1988)
[18] Chow, S.-N.; Mallet-Paret, J., Pattern formation and spatial chaos in lattice dynamical systems, I, II, IEEE Trans. Circuits Syst., 42, 746-751, (1995)
[19] Chow, S.-N.; Mallet-Paret, J.; Shen, W., Traveling waves in lattice dynamical systems, J. Differential Equations, 149, 248-291, (1998) · Zbl 0911.34050
[20] Chow, S.-N.; Mallet-Paret, J.; Van Vleck, E. S., Pattern formation and spatial chaos in spatially discrete evolution equations, Random Comput. Dyn., 4, 109-178, (1996) · Zbl 0883.58020
[21] Chow, S.-N.; Shen, W., Dynamics in a discrete Nagumo equation: spatial topological chaos, SIAM J. Appl. Math., 55, 1764-1781, (1995) · Zbl 0840.34012
[22] Dogaru, R.; Chua, L. O., Edge of chaos and local activity domain of fitz-hugh-Nagumo equation, Internat. J. Bifur. Chaos, 8, 211-257, (1988)
[23] Erneux, T.; Nicolis, G., Propagating waves in discrete bistable reaction diffusion systems, Phys. D, 67, 237-244, (1993) · Zbl 0787.92010
[24] Hale, J. K., Numerical dynamics, (Chaotic Numerics, Contemporary Mathematics, vol. 172, (1994), American Mathematical Society Providence, RI), 1-30 · Zbl 0808.34061
[25] Han, X., Exponential attractors for lattice dynamical systems in weighted spaces, Discrete Contin. Dyn. Syst., 31, 445-467, (2011) · Zbl 1230.34014
[26] Joyner, R. W.; Ramza, B. M.; Osaka, T.; Tan, R. C., Cellular mechanisms of delayed recovery of excitability in ventricular tissue, Am. J. Physiol., 260, 225-233, (1991)
[27] Kapval, R., Discrete models for chemically reacting systems, J. Math. Chem., 6, 113-163, (1991)
[28] Keener, J. P., Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47, 556-572, (1987) · Zbl 0649.34019
[29] Keener, J. P., The effects of discrete gap junction coupling on propagation in myocardium, J. Theoret. Biol., 148, 49-82, (1991)
[30] Kloeden, P. E.; Lorenz, T., Pullback attractors of reaction-diffusion inclusions with space-dependent delay, Discrete Contin. Dyn. Syst. Ser. B, (2016), in press
[31] Kloeden, P. E.; Lorenz, T.; Yang, M., Reaction-diffusion equations with a switched-off reaction zone, Commun. Pure Appl. Anal., 13, 1907-1933, (2014) · Zbl 1304.35791
[32] Kloeden, P. E.; Rasmussen, M., Nonautonomous dynamical systems, Mathematical Surveys and Monographs, vol. 176, (2011), American Mathematical Society Providence · Zbl 1310.37011
[33] Laplante, J. P.; Erneux, T., Propagating failure in arrays of coupled bistable chemical reactors, J. Phys. Chem., 96, 4931-4934, (1992)
[34] Mallet-Paret, J., The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations, 11, 49-127, (1999) · Zbl 0921.34046
[35] Martelli, M., A Rothe’s type theorem for non-compact acyclic-valued maps, Boll. Unione Mat. Ital., 11, 70-76, (1975) · Zbl 0314.47035
[36] Morillas, F.; Valero, J., Peano’s theorem and attractors for lattice dynamical systems, Internat. J. Bifur. Chaos, 19, 557-578, (2009) · Zbl 1170.37337
[37] Pazy, A., Semigroups of linear operators and applications to partial differential equations, (1983), Springer-Verlag New York · Zbl 0516.47023
[38] Pérez-Muñuzuri, A.; Pérez-Muñuzuri, V.; Pérez-Villar, V.; Chua, L. O., Spiral waves on a 2-d array of nonlinear circuits, IEEE Trans. Circuits Syst., 40, 872-877, (1993) · Zbl 0844.93056
[39] Rashevsky, N., Mathematical biophysics, (1960), Dover Publications Inc. New York · JFM 64.1148.01
[40] Schmalfuß, B., Attractors for the nonautonomous dynamical systems, (International Conference on Differential Equations, vols. 1, 2, (2000), World Sci. Publishing River Edge, NJ), 684-689 · Zbl 0971.37038
[41] Scott, A. C., Analysis of a myelinated nerve model, Bull. Math. Biophys., 26, 247-254, (1964)
[42] Shen, W., Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices, SIAM J. Appl. Math., 56, 1379-1399, (1996) · Zbl 0868.58059
[43] Shipston, M. J., Alternative splicing of potassium channels: a dynamic switch of cellular excitability, Trends Cell Biol., 11, 353-358, (2001)
[44] Temam, R., Infinite dimensional dynamical systems in mechanics and physics, (1997), Springer Berlin · Zbl 0871.35001
[45] Wang, B., Dynamics of systems on infinite lattices, J. Differential Equations, 221, 224-245, (2006) · Zbl 1085.37056
[46] Wang, B., Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331, 121-136, (2007) · Zbl 1112.37076
[47] Wang, Y.; Bai, K., Pullback attractors for a class of nonlinear lattices with delays, Discrete Contin. Dyn. Syst. Ser. B, 20, 1225-1242, (2015)
[48] Zinner, B., Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96, 1-27, (1992) · Zbl 0752.34007
[49] Zhou, S., Attractors for first order dissipative lattice dynamical systems, Phys. D, 178, 51-61, (2003) · Zbl 1011.37047
[50] Zhou, S., Attractors for second order lattice dynamical systems, J. Differential Equations, 179, 605-624, (2002) · Zbl 1002.37040
[51] Zhou, S.; Han, X., Pullback exponential attractors for non-autonomous lattice systems, J. Dynam. Differential Equations, 24, 601-631, (2012) · Zbl 1267.34020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.