×

zbMATH — the first resource for mathematics

Global dynamics of avian influenza epidemic models with psychological effect. (English) Zbl 1344.92172
Summary: Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

MSC:
92D30 Epidemiology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Centers for Disease Control and Prevention (CDC), Types of influenza virus
[2] Alexander, D. J., An overview of the epidemiology of avian influenza, Vaccine, 25, 30, 5637-5644, (2007)
[3] Centers for Disease Control and Prevention (CDC), Information on Avian Influenza
[4] Centers for Disease Control and Prevention (CDC), Influenza Type A Viruses
[5] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control, (1991), Oxford, UK: Oxford University Press, Oxford, UK
[6] Keeling, M. J.; Rohani, P., Modeling Infectious Diseases in Humans and Animals, (2008), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 1279.92038
[7] Iwami, S.; Takeuchi, Y.; Liu, X., Avian-human influenza epidemic model, Mathematical Biosciences, 207, 1, 1-25, (2007) · Zbl 1114.92058
[8] Lucchetti, J.; Roy, M.; Martcheva, M.; Tchuenche, J. M.; Mukandavire, Z., An avian influenza model and its fit to human avian influenza cases, Advances in Disease Epidemiology, 1-30, (2009), New York, NY, USA: Nova Science Publishers, New York, NY, USA
[9] Iwami, S.; Takeuchi, Y.; Liu, X., Avian flu pandemic: can we prevent it?, Journal of Theoretical Biology, 257, 1, 181-190, (2009) · Zbl 1400.92496
[10] Jung, E.; Iwami, S.; Takeuchi, Y.; Jo, T.-C., Optimal control strategy for prevention of avian influenza pandemic, Journal of Theoretical Biology, 260, 2, 220-229, (2009) · Zbl 1402.92278
[11] Iwami, S.; Takeuchi, Y.; Liu, X.; Nakaoka, S., A geographical spread of vaccine-resistance in avian influenza epidemics, Journal of Theoretical Biology, 259, 2, 219-228, (2009) · Zbl 1402.92277
[12] Gumel, A. B., Global dynamics of a two-strain avian influenza model, International Journal of Computer Mathematics, 86, 1, 85-108, (2009) · Zbl 1154.92032
[13] Agusto, F. B., Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model, BioSystems, 113, 3, 155-164, (2013)
[14] Ma, X.; Wang, W., A discrete model of avian influenza with seasonal reproduction and transmission, Journal of Biological Dynamics, 4, 3, 296-314, (2010) · Zbl 1342.92255
[15] Bourouiba, L.; Gourley, S. A.; Liu, R.; Wu, J., The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza, SIAM Journal on Applied Mathematics, 71, 2, 487-516, (2011) · Zbl 1231.34146
[16] Gourley, S. A.; Liu, R.; Wu, J., Spatiotemporal distributions of migratory birds: patchy models with delay, SIAM Journal on Applied Dynamical Systems, 9, 2, 589-610, (2010) · Zbl 1195.34126
[17] Tuncer, N.; Martcheva, M., Modeling seasonality in avian influenza H5N1, Journal of Biological Systems, 21, 4, (2013) · Zbl 1342.92285
[18] Zhang, J.; Jin, Z.; Sun, G.-Q.; Sun, X.-D.; Wang, Y.-M.; Huang, B., Determination of original infection source of H7N9 avian influenza by dynamical model, Scientific Reports, 4, article 4846, (2014)
[19] Xiao, Y.; Sun, X.; Tang, S.; Wu, J., Transmission potential of the novel avian influenza A(H7N9) infection in mainland China, Journal of Theoretical Biology, 352, 1-5, (2014) · Zbl 1412.92303
[20] Hsieh, Y.-H.; Wu, J.; Fang, J.; Yang, Y.; Lou, J.; Sun, G.-Q., Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China, PLoS ONE, 9, 12, (2014)
[21] Bauch, C. T.; Galvani, A. P., Social factors in epidemiology, Science, 342, 6154, 47-49, (2013)
[22] Ferguson, N., Capturing human behaviour, Nature, 446, article 733, (2007)
[23] Funk, S.; Gilad, E.; Watkins, C.; Jansen, V. A. A., The spread of awareness and its impact on epidemic outbreaks, Proceedings of the National Academy of Sciences of the United States of America, 106, 16, 6872-6877, (2009) · Zbl 1203.91242
[24] Funk, S.; Salathé, M.; Jansen, V. A. A., Modelling the influence of human behaviour on the spread of infectious diseases: a review, Journal of the Royal Society Interface, 7, 50, 1247-1256, (2010)
[25] Olsen, S. J.; Laosiritaworn, Y.; Pattanasin, S.; Prapasiri, P.; Dowell, S. F., Poultry-handling practices during avian influenza outbreak, Thailand, Emerging Infectious Diseases, 11, 10, 1601-1603, (2005)
[26] Xiang, N.; Shi, Y.; Wu, J.; Zhang, S.; Ye, M.; Peng, Z.; Zhou, L.; Zhou, H.; Liao, Q.; Huai, Y.; Li, L.; Yu, Z.; Cheng, X.; Su, W.; Wu, X.; Ma, H.; Lu, J.; McFarland, J.; Yu, H., Knowledge, attitudes and practices (KAP) relating to avian influenza in urban and rural areas of China, BMC Infectious Diseases, 10, article 34, (2010)
[27] Wang, L.; Cowling1, B. J.; Wu, P., Human exposure to live poultry and psychological and behavioral responses to influenza A(H7N9), China, Emerging Infectious Diseases journal, 20, 1296-1305, (2014)
[28] Liu, R.; Wu, J.; Zhu, H., Media/psychological impact on multiple outbreaks of emerging infectious diseases, Computational and Mathematical Methods in Medicine, 8, 3, 153-164, (2007) · Zbl 1121.92060
[29] Funk, S.; Bansal, S.; Bauch, C. T.; Eames, K. T. D.; Edmunds, W. J.; Galvani, A. P.; Klepac, P., Nine challenges in incorporating the dynamics of behaviour in infectious diseases models, Epidemics, (2014)
[30] Liu, W. M.; Levin, S. A.; Iwasa, Y., Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, Journal of Mathematical Biology, 23, 2, 187-204, (1986) · Zbl 0582.92023
[31] Ruan, S.; Wang, W., Dynamical behavior of an epidemic model with a nonlinear incidence rate, Journal of Differential Equations, 188, 1, 135-163, (2003) · Zbl 1028.34046
[32] Tang, Y.; Huang, D.; Ruan, S.; Zhang, W., Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM Journal on Applied Mathematics, 69, 2, 621-639, (2008) · Zbl 1171.34033
[33] Xiao, D.; Ruan, S., Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208, 2, 419-429, (2007) · Zbl 1119.92042
[34] Capasso, V.; Serio, G., A generalization of the Kermack-McKENdrick deterministic epidemic model, Mathematical Biosciences, 42, 1-2, 43-61, (1978) · Zbl 0398.92026
[35] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180, 29-48, (2002) · Zbl 1015.92036
[36] Hale, J. K., Ordinary Differential Equations, (1969), New York, NY, USA: Wiley-Interscience, New York, NY, USA · Zbl 0186.40901
[37] Zhang, J.; Feng, B., The Geometric Theory and Bifurcation Problems of Ordinary Differential Equations, (1997), Beijing, China: Peking University Press, Beijing, China
[38] Zhang, Z.; Ding, T.; Huang, W.; Dong, Z., Qualitative Theory of Differential Equations, (1985), Beijing, China: Science Press, Beijing, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.