# zbMATH — the first resource for mathematics

Imaginary geometry. II: Reversibility of $$\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$$ for $$\kappa\in(0,4)$$. (English) Zbl 1344.60078
Summary: Given a simply connected planar domain $$D$$, distinct points $$x,y\in\partial D$$, and $$\kappa>0$$, the Schramm-Loewner evolution $$\operatorname{SLE}_{\kappa}$$ is a random continuous non-self-crossing path in $$\overline{D}$$ from $$x$$ to $$y$$. The $$\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$$ processes, defined for $$\rho_{1},\rho_{2}>-2$$, are in some sense the most natural generalizations of $$\operatorname{SLE}_{\kappa}$$.
When $$\kappa\leq 4$$, we prove that the law of the time-reversal of an $$\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$$ process from $$x$$ to $$y$$ is, up to parameterization, an $$\operatorname{SLE}_{\kappa}(\rho_{2};\rho_{1})$$ process from $$y$$ to $$x$$. This assumes that the “force points” used to define the $$\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$$ process are immediately to the left and right of the SLE seed. A generalization to arbitrary (and arbitrarily many) force points applies whenever the path does not (or is conditioned not to) hit $$\partial D\setminus\{x,y\}$$.
The proof of time-reversal symmetry makes use of the interpretation of $$\operatorname{SLE}_{\kappa}(\rho_{1};\rho_{2})$$ processes as a ray of a random geometry associated to the Gaussian free field. Within this framework, the time-reversal result allows us to couple two instances of the Gaussian free field (with different boundary conditions) so that their difference is almost surely constant on either side of the path. In a fairly general sense, adding appropriate constants to the two sides of a ray reverses its orientation.
Editorial remark: For Part I see [Probab. Theory Relat. Fields 164, No. 3–4, 553–705 (2016; Zbl 1336.60162)].

##### MSC:
 60J67 Stochastic (Schramm-)Loewner evolution (SLE) 60G15 Gaussian processes 60G60 Random fields 60D05 Geometric probability and stochastic geometry
Full Text:
##### References:
  Beffara, V. (2008). The dimension of the SLE curves. Ann. Probab. 36 1421-1452. · Zbl 1165.60007  Ben Arous, G. and Deuschel, J.-D. (1996). The construction of the $$(d+1)$$-dimensional Gaussian droplet. Comm. Math. Phys. 179 467-488. · Zbl 0858.60096  Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 1-38. · Zbl 1117.60086  Chelkak, D. and Smirnov, S. (2012). Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189 515-580. · Zbl 1257.82020  Dubédat, J. (2005). $$\mathrm{SLE}(\kappa,\rho)$$ martingales and duality. Ann. Probab. 33 223-243. · Zbl 1096.60037  Dubédat, J. (2009). Duality of Schramm-Loewner evolutions. Ann. Sci. Éc. Norm. Supér. (4) 42 697-724. · Zbl 1205.60147  Dubédat, J. (2009). SLE and the free field: Partition functions and couplings. J. Amer. Math. Soc. 22 995-1054. · Zbl 1204.60079  Hagendorf, C., Bernard, D. and Bauer, M. (2010). The Gaussian free field and $$\mathrm{SLE}_{4}$$ on doubly connected domains. J. Stat. Phys. 140 1-26. · Zbl 1193.82027  Izyurov, K. and Kytölä, K. (2013). Hadamard’s formula and couplings of SLEs with free field. Probab. Theory Related Fields 155 35-69. · Zbl 1269.60067  Kenyon, R. (2001). Dominos and the Gaussian free field. Ann. Probab. 29 1128-1137. · Zbl 1034.82021  Lamperti, J. (1972). Semi-stable Markov processes. I. Z. Wahrsch. Verw. Gebiete 22 205-225. · Zbl 0274.60052  Lawler, G., Schramm, O. and Werner, W. (2003). Conformal restriction: The chordal case. J. Amer. Math. Soc. 16 917-955 (electronic). · Zbl 1030.60096  Lawler, G. F. (2005). Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114 . Amer. Math. Soc., Providence, RI. · Zbl 1074.60002  Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 939-995. · Zbl 1126.82011  Makarov, N. and Smirnov, S. (2010). Off-critical lattice models and massive SLEs. In XVIth International Congress on Mathematical Physics 362-371. World Sci. Publ., Hackensack, NJ. · Zbl 1205.82055  Miller, J. (2010). Universality for $$\operatorname{SLE}(4)$$. Available at . arXiv:1010.1356  Miller, J. (2011). Fluctuations for the Ginzburg-Landau $$\nabla\phi$$ interface model on a bounded domain. Comm. Math. Phys. 308 591-639. · Zbl 1237.82030  Miller, J. and Sheffield, S. (2012). Imaginary geometry I: Interacting SLEs. Probab. Theory Related Fields . To appear. Available at . arXiv:1201.1496 · Zbl 1336.60162  Miller, J. and Sheffield, S. (2012). Imaginary geometry III: Reversibility of SLE$$_{\kappa}$$ for $$\kappa \in(4,8)$$. Ann. of Math. To appear. Available at . arXiv:1201.1498 · Zbl 1393.60092  Miller, J. and Sheffield, S. (2013). Imaginary geometry IV: Interior rays, whole-plane reversibility, and space-filling trees. Available at . arXiv:1302.4738 · Zbl 1378.60108  Naddaf, A. and Spencer, T. (1997). On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys. 183 55-84. · Zbl 0871.35010  Phelps, R. R. (2001). Lectures on Choquet’s Theorem , 2nd ed. Lecture Notes in Math. 1757 . Springer, Berlin. · Zbl 0997.46005  Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Springer, Berlin. · Zbl 0917.60006  Rider, B. and Virág, B. (2007). The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN 2 Art. ID rnm006, 33. · Zbl 1130.60030  Rohde, S. and Schramm, O. (2005). Basic properties of SLE. Ann. of Math. (2) 161 883-924. · Zbl 1081.60069  Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 221-288. · Zbl 0968.60093  Schramm, O. (2011). Conformally invariant scaling limits: An overview and a collection of problems [MR2334202]. In Selected Works of Oded Schramm. Volume 1, 2. Sel. Works Probab. Stat. 1161-1191. Springer, New York.  Schramm, O. and Sheffield, S. (2005). Harmonic explorer and its convergence to $$\mathrm{SLE}_{4}$$. Ann. Probab. 33 2127-2148. · Zbl 1095.60007  Schramm, O. and Sheffield, S. (2009). Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202 21-137. · Zbl 1210.60051  Schramm, O. and Sheffield, S. (2013). A contour line of the continuum Gaussian free field. Probab. Theory Related Fields 157 47-80. · Zbl 1331.60090  Schramm, O. and Wilson, D. B. (2005). SLE coordinate changes. New York J. Math. 11 659-669 (electronic). · Zbl 1094.82007  Sheffield, S. Local sets of the Gaussian free field: Slides and audio. Available at , https://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield2/ , https://www.fields.utoronto.ca/audio/05-06/percolation_SLE/sheffield3/ .  Sheffield, S. (2010). Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. To appear. Available at . arXiv:1012.4797 · Zbl 1388.60144  Sheffield, S. (2007). Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 521-541. · Zbl 1132.60072  Sheffield, S. (2009). Exploration trees and conformal loop ensembles. Duke Math. J. 147 79-129. · Zbl 1170.60008  Smirnov, S. (2001). Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 239-244. · Zbl 0985.60090  Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2) 172 1435-1467. · Zbl 1200.82011  Werner, W. (2004). Girsanov’s transformation for $$\mathrm{SLE}(\kappa,\rho)$$ processes, intersection exponents and hiding exponents. Ann. Fac. Sci. Toulouse Math. (6) 13 121-147. · Zbl 1059.60099  Werner, W. (2004). Random planar curves and Schramm-Loewner evolutions. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1840 107-195. Springer, Berlin. · Zbl 1057.60078  Werner, W. (2005). Conformal restriction and related questions. Probab. Surv. 2 145-190. · Zbl 1189.60032  Werner, W. and Wu, H. (2013). From $$\mathrm{CLE}(\kappa)$$ to $$\mathrm{SLE}(\kappa,\rho)$$’s. Electron. J. Probab. 18 no. 36, 20. · Zbl 1338.60205  Zhan, D. (2008). Reversibility of chordal SLE. Ann. Probab. 36 1472-1494. · Zbl 1157.60051  Zhan, D. (2010). Reversibility of some chordal $$\mathrm{SLE}(\kappa;\rho)$$ traces. J. Stat. Phys. 139 1013-1032. · Zbl 1205.82063  Zhan, D. (2015). Reversibility of whole-plane SLE. Probab. Theory Related Fields 161 561-618. · Zbl 1312.60096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.