×

zbMATH — the first resource for mathematics

Analysis of some ruin-related quantities in a Markov-modulated risk model. (English) Zbl 1344.60075
Summary: In this paper, we study the joint Laplace transform and probability generating function of some random quantities that occur in each environment state by the time of ruin in a Markov-modulated risk process. These quantities include the duration spent in each state, the number of claims and the aggregate amount of claims that occurred in each state by the time of ruin. Explicit formulae for the joint transforms, given the initial surplus, and the initial and terminal environment states, are expressed in terms of a matrix version of the scale function. Moments and covariances of these ruin-related quantities are obtained and numerical illustrations are presented. The joint transform of the duration spent in each state, the number of claims, and the aggregate amount of claims that occurred in each state by the time the surplus attains a certain level are also investigated.

MSC:
60J28 Applications of continuous-time Markov processes on discrete state spaces
60J27 Continuous-time Markov processes on discrete state spaces
60K37 Processes in random environments
91B30 Risk theory, insurance (MSC2010)
44A10 Laplace transform
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/03461238.1989.10413858 · Zbl 0684.62073
[2] DOI: 10.2143/AST.25.1.563253
[3] DOI: 10.1016/0167-6687(95)00034-8 · Zbl 0859.60081
[4] DOI: 10.2307/1426442 · Zbl 0512.60086
[5] DOI: 10.1016/S0167-6687(01)00091-9 · Zbl 1074.91549
[6] Feng R., Schweizerische Aktuarvereinigung Mitteilungen 1 pp 71– (2009)
[7] DOI: 10.1016/0166-5316(93)90035-S · Zbl 0781.60098
[8] DOI: 10.1080/10920277.2005.10596197 · Zbl 1085.62508
[9] DOI: 10.1093/imanum/20.4.499 · Zbl 0966.65040
[10] Kyprianou A.E., Gerber-Shiu Risk Theory · Zbl 1277.91003
[11] DOI: 10.1016/j.insmatheco.2015.08.001 · Zbl 1348.91163
[12] DOI: 10.1016/j.insmatheco.2004.01.002 · Zbl 1188.91089
[13] DOI: 10.1080/10920277.2007.10597448
[14] DOI: 10.2143/AST.38.1.2030402 · Zbl 1169.91390
[15] DOI: 10.1016/j.spl.2012.12.019 · Zbl 1264.91073
[16] DOI: 10.1016/S0167-6687(00)00038-X · Zbl 0971.91031
[17] DOI: 10.1080/03461230600889652 · Zbl 1146.91027
[18] DOI: 10.1016/j.insmatheco.2005.05.006 · Zbl 1129.60066
[19] DOI: 10.1016/j.spa.2005.09.008 · Zbl 1093.60051
[20] DOI: 10.1080/10920277.2007.10597471
[21] DOI: 10.1080/03461238.1997.10413977 · Zbl 0926.62105
[22] Snoussi M., Bull. Swiss Assoc. Actuaries pp 31– (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.