×

zbMATH — the first resource for mathematics

2- and 3-modular lattice wiretap codes in small dimensions. (English) Zbl 1343.94098
Summary: A recent line of work on lattice codes for Gaussian wiretap channels introduced a new lattice invariant called secrecy gain as a code design criterion which captures the confusion that lattice coding produces at an eavesdropper. Following up the study of unimodular lattice wiretap codes [F. Lin and F. Oggier, IEEE Trans. Inf. Theory 59, No. 6, 3295–3303 (2013; doi:10.1109/TIT.2013.2246814)], this paper investigates 2- and 3-modular lattices which can be constructed from linear codes and compares them with unimodular lattices. Most even 2- and 3-modular lattices are found to have better performance (that is, a higher secrecy gain) than the best unimodular lattices in dimension \(n\), \(2\leq n\leq 23\). Odd 2-modular lattices are considered, too, and three lattices are found to outperform the best unimodular lattices.

MSC:
94B25 Combinatorial codes
Software:
Magma; Mathematica
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Lin, F; Oggier, F, A classification of unimodular lattice wiretap codes in small dimensions, IEEE Trans. Inf. Theory, 59, 3295-3303, (2013) · Zbl 1364.94761
[2] Wyner, A.D.: The wire-tap channel. Bell. Syst. Tech. J. 54(8), 1355-1387 (1975) · Zbl 0316.94017
[3] Liang, Y., Poor, H.V., Shamai, S.: Information theoretic security. Found Trends Commun Inform Theory 5(4-5), 355-580 (2009). doi: 10.1561/0100000036 · Zbl 1194.94006
[4] Ozarow, LH; Wyner, AD, Wire-TAP channel II, Bell Syst. Tech. J., 63, 2135-2157, (1984) · Zbl 0587.94013
[5] Thangaraj, A; Dihidar, S; Calderbank, AR; McLaughlin, SW; Merolla, J-M, Applications of LDPC codes to the wiretap channel, IEEE Trans. Inf. Theory, 53, 2933-2945, (2007) · Zbl 1326.94131
[6] Mahdavifar, Hessam; Vardy, Alexander, Achieving the secrecy capacity of wiretap channels using polar codes, IEEE Trans. Inf. Theory, 57, 6428-6443, (2011) · Zbl 1365.94309
[7] Ong, SS; Oggier, F, Wiretap lattice codes from number fields with no small norm elements, Des. Codes Cryptogr., 73, 425-440, (2014) · Zbl 1335.94106
[8] Cheraghchi, M; Didier, F; Shokrollahi, A, Invertible extractors and wiretap protocols, IEEE Trans. Inf. Theory, 58, 1254-1274, (2012) · Zbl 1365.94417
[9] Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. Adv. Cryptol. CRYPTO, 7417, 294-311 (2012) · Zbl 1296.94081
[10] Leung-Yan-Cheong, SK; Hellman, ME, The Gaussian wire-TAP channel, IEEE Trans. Inf. Theory, IT-24, 451-456, (1978) · Zbl 0384.94014
[11] Klinc, D; Ha, J; McLaughlin, S; Barros, J; Kwak, B, LDPC codes for the Gaussian wiretap channel, IEEE Trans. Inf. Foren. Secur., 6, 532-540, (2011)
[12] Liu, R., Poor, H.V., Spasojevic, P., Liang, Y.: Nested codes for secure transmission. In: Proceedings of PIMRC, pp. 1-5 (2008) · Zbl 1335.94106
[13] Belfiore, J.-C., Oggier, F.: Secrecy gain: a wiretap lattice code design. In: ISITA (2010). arXiv:1004.4075v2 [cs.IT] · Zbl 1365.94309
[14] Ling, C; Luzzi, L; Belfiore, J-C; Stehle, D, Semantically secure lattice codes for the Gaussian wiretap channel, IEEE Trans. Inf. Forens. Secur., 60, 6399-6416, (2014) · Zbl 1360.94417
[15] Belfiore, J.-C., Solé, P.: Unimodular lattices for the Gaussian Wiretap Channel. In: ITW 2010, Dublin. arXiv:1007.0449v1 [cs.IT] · Zbl 0876.94053
[16] Oggier, F., Belfiore, J.-C., Solé, P.: Lattice Codes for the Wiretap Gaussian Channel: Construction and Analysis. arXiv:1103.4086v3 [cs.IT] · Zbl 1364.94761
[17] Ernvall-Hytönen, A-M, On a conjecture by belfiore and solé on some lattices, IEEE Trans. Inf. Theory, 58, 5950-5955, (2012) · Zbl 1364.11132
[18] Ernvall-Hytönen, A.-M.: Some results related to the conjecture by Belfiore and Solé. IEEE Trans. Inf. Theory 60(5), 2805-2812 (2014) · Zbl 1360.94346
[19] Lin, F., Oggier, F.: Gaussian wiretap lattice codes from binary self-dual codes. In: 2012 IEEE Information Theory Workshop (ITW) pp. 662-666
[20] Pinchak, J.: Wiretap codes: families of lattices satisfying the Belfiore-Solé secrecy function conjecture. In: 2013 IEEE International Symposium on Information Theory (ISIT) pp. 2617-2620 · Zbl 1365.94309
[21] Pinchak, J., Sethuraman, B.A.: The belfiore-Solé conjecture and a certain technique for verifying it for a given lattice. In: Proceedings of ITA 2014. http://www.csun.edu/ asethura/papers/ITA_2014Mod · Zbl 1326.94131
[22] Ernvall-Hytönen, A.-M., Sethuraman, B.A.: Counterexample to the Generalized Belfiore-Solé Secrecy Function Conjecture for \(ℓ \)-Modular Lattices. arXiv:1409.3188v2 [cs.IT]
[23] Lin, F., Oggier, F: Secrecy gain of Gaussian wiretap codes from 2-and 3-modular lattices. In: 2012 IEEE International Symposium on Information Theory (ISIT) pp. 1747-1751
[24] Quebbemann, H-G, Modular lattices in Euclidean spaces, J. Number Theory, 54, 190-202, (1995) · Zbl 0874.11038
[25] Rains, EM; Sloane, NJA, The shadow theory of modular and unimodular lattices, J. Number Theory, 73, 359-389, (1998) · Zbl 0917.11026
[26] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977) · Zbl 0369.94008
[27] Stewart, I.N., Tall, D.O.: Algebraic Number Theory. Chapman and Hall, London (1979) · Zbl 0413.12001
[28] Bachoc, Christine, Applications of coding theory to the construction of modular lattices, J. Comb. Theory Ser. A, 78, 92-119, (1997) · Zbl 0876.94053
[29] Chapman, R; Dougherty, ST; Gaborit, P; Solé, P, 2-modular lattices from ternary codes, J. de Théorie des Nombres de Bordeaux tome, 14, 73-85, (2002) · Zbl 1050.94018
[30] Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Graduate Texts in Math. No. 97, 2nd edn. Springer, New York (1993) · Zbl 0804.11039
[31] Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1998) · Zbl 0917.11027
[32] Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, Berlin (1977)
[33] Wolfram Research Inc.: Mathematica, Version 8.0. Wolfram Research Inc, Champaign, IL (2010)
[34] http://www.math.rwth-aachen.de/Gabriele.Nebe/LATTICES/
[35] http://magma.maths.usyd.edu.au/magma/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.