×

Fractional partial differential equation denoising models for texture image. (English) Zbl 1343.94012

Summary: In this paper, a set of fractional partial differential equations based on fractional total variation and fractional steepest descent approach are proposed to address the problem of traditional drawbacks of PM and ROF multi-scale denoising for texture image. By extending Green, Gauss, Stokes and Euler-Lagrange formulas to fractional field, we can find that the integer formulas are just their special case of fractional ones. In order to improve the denoising capability, we proposed 4 fractional partial differential equation based multiscale denoising models, and then discussed their stabilities and convergence rate. Theoretic deduction and experimental evaluation demonstrate the stability and astringency of fractional steepest descent approach, and fractional nonlinearly multi-scale denoising capability and best value of parameters are discussed also. The experiments results prove that the ability for preserving high-frequency edge and complex texture information of the proposed denoising models are obviously superior to traditional integral based algorithms, especially for texture detail rich images.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Chan, T.; Esedoglu, S.; Park, F.; etal.; Paragios, N. (ed.); Yunmei, C. (ed.); Faugeras, O. (ed.), Recent developments in total variation image restoration (2005), New York
[2] Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. Multiscale Model Simul, 2005, 4: 490-530 · Zbl 1108.94004 · doi:10.1137/040616024
[3] Weickert J. Anisotropic Diffusion in Image Processing. Stuttgart: Teubner, 1998 · Zbl 0886.68131
[4] Aubert G, Kornprobst P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. New York: Springer-Verlag, 2006 · Zbl 1110.35001
[5] Perona P, Malik J. Scale-space and edge detecting using anisotropic diffusion. IEEE Trans Patt Anal Mach Intell, 1990, 12: 629-639 · doi:10.1109/34.56205
[6] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D-Nonlinear Phenom, 1992, 60: 259-268 · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[7] Sapiro G, Ringach D. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans Image Process, 1996, 5: 1582-1586 · doi:10.1109/83.541429
[8] Blomgren P, Chan T. Color TV: total variation methods for restoration of vector-valued images. IEEE Trans Image Process, 1998, 7: 304-309 · doi:10.1109/83.661180
[9] Galatsanos N P, Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans Image Process, 1992, 1: 322-336 · doi:10.1109/83.148606
[10] Li S Z. Close-form solution and parameter selection for convex minimization-based edge-preserving smoothing. IEEE Trans Patt Anal Mach Intell, 1998, 20: 916-932 · doi:10.1109/34.713359
[11] Nguyen N, Milanfar P, Golub G. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Trans Image Process, 2001, 10: 1299-1308 · Zbl 1037.68784 · doi:10.1109/83.941854
[12] Strong D M, Aujol J F, Chan T F. Scale recognition, regularization parameter selection, and Meyer’s g norm in total variation regularization, multiscale model. Multiscale Model Simul, 2006, 5: 273-303 · Zbl 1161.68830 · doi:10.1137/040621624
[13] Thompson A M, Brown J C, Kay J W, et al. A study of methods of choosing the smoothing parameter in image restoration by regularization. IEEE Trans Patt Anal Mach Intell, 1991, 13: 326-339 · doi:10.1109/34.88568
[14] Mrazek P, Navara M. Selection of optimal stopping time for nonlinear diffusion filtering. Int J Comput Vis, 2003, 52: 189-203 · Zbl 1477.94018 · doi:10.1023/A:1022908225256
[15] Gilboa G, Sochen N, Zeevi Y Y. Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans Image Process, 2006, 15: 2269-2280 · doi:10.1109/TIP.2006.875248
[16] Vogel C R, Oman M E. Iterative methods for total variation denoising. SIAM J Sci Comput, 1996, 17: 227-238 · Zbl 0847.65083 · doi:10.1137/0917016
[17] Dobson D C, Vogel C R. Convergence of an iterative method for total variation denoising. SIAM J Numer Anal, 1997, 34: 1779-1791 · Zbl 0898.65034 · doi:10.1137/S003614299528701X
[18] Chambolle A. An algorithm for total variation minimization and applications. J Math Imaging Vis, 2004, 20: 89-97 · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011320.81911.38
[19] Darbon, J.; Sigelle, M., Exact optimization of discrete constrained total variation minimization problems, 548-557 (2004) · Zbl 1113.68612 · doi:10.1007/978-3-540-30503-3_40
[20] Darbon J, Sigelle M. Image restoration with discrete constrained total variation part I: fast and exact optimization. J Math Imaging Vis, 2006, 26: 261-276 · Zbl 1478.94026 · doi:10.1007/s10851-006-8803-0
[21] Darbon J, Sigelle M. Image restoration with discrete constrained total variation part II: levelable functions, convex priors and non-convex cases. J Math Imaging Vis, 2006, 26: 277-291 · Zbl 1478.94025 · doi:10.1007/s10851-006-0644-3
[22] Wohlberg B, Rodriguez P. An iteratively reweighted norm algorithm for minimization of total variation functionals. IEEE Signal Process Lett, 2007, 14: 948-951 · doi:10.1109/LSP.2007.906221
[23] Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal, 1992, 29: 182-193 · Zbl 0746.65091 · doi:10.1137/0729012
[24] Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: the Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. Boston: American Mathematical Society, 2001 · Zbl 0987.35003
[25] Strong D, Chan T. Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl, 2003, 19: 165-187 · doi:10.1088/0266-5611/19/6/059
[26] Alliney S. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans Signal Process, 1997, 45: 913-917 · doi:10.1109/78.564179
[27] Nikolova M. A variational approach to remove outliers and impulse noise. J Math Imag Vis, 2004, 20: 99-120 · Zbl 1366.94065 · doi:10.1023/B:JMIV.0000011920.58935.9c
[28] Chan T, Esedoglu S. Aspects of total variation regularized l1 function approximation. SIAM J Numer Anal, 2005, 65: 1817-1837 · Zbl 1096.94004
[29] Nikolova M. Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM J Numer Anal, 2002, 40: 965-994 · Zbl 1018.49025 · doi:10.1137/S0036142901389165
[30] Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation based on image restoration. Multiscale Model Simul, 2005, 4: 460-489 · Zbl 1090.94003 · doi:10.1137/040605412
[31] Gilboa, G.; Zeevi, Y. Y.; Sochen, N., Texture preserving variational denoising using an adaptive fidelity term, 137-144 (2003)
[32] Esedoglu S, Osher S. Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Commun Pure Appl Math, 2004, 57: 1609-1626 · Zbl 1083.49029 · doi:10.1002/cpa.20045
[33] Blomgren, P.; Chan, T.; Mulet, P., Extensions to total variation denoising, 267-375 (1997)
[34] Blomgren, P.; Mulet, P.; Chan, T.; etal., Total variation image restoration: numerical methods and extensions, 384-387 (1997) · doi:10.1109/ICIP.1997.632128
[35] Chan T, Marquina A, Mulet P. High-order total variation-based image restoration. SIAM J Sci Comput, 2000, 22: 503-516 · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[36] You Y L, Kaveh M. Fourth-order partial differential equation for noise removal. IEEE Trans Image Process, 2000, 9: 1723-1730 · Zbl 0962.94011 · doi:10.1109/83.869184
[37] Lysaker M, Lundervold A, Tai X C. Noise removal using fourth order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process, 2003, 12: 1579-1590 · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[38] Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes. IEEE Trans Patt Anal Mach Intell, 2004, 26: 1020-1036 · doi:10.1109/TPAMI.2004.47
[39] Chambolle A, Lions P. Image recovery via total variation minimization and related problem. Numer Math, 1997, 76: 167-188 · Zbl 0874.68299 · doi:10.1007/s002110050258
[40] Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H1 norm. Multiscale Model Simul, 2005, 1: 349-370 · Zbl 1051.49026 · doi:10.1137/S1540345902416247
[41] Lysaker M, Tai X C. Iterative images restoration combining a total variation minimization and a second-order functional. Int J Comput Vis, 2006, 66: 5-18 · Zbl 1286.94021 · doi:10.1007/s11263-005-3219-7
[42] Li F, Shen C M, Fan J S, et al. Image restoration combining a total variational filter and a fourth-order filter. J Vis Commun Image Represent, 2007, 18: 322-330 · doi:10.1016/j.jvcir.2007.04.005
[43] Lysaker M, Osher M, Tai X C. Noise removal using smoothed normals and surface fitting. IEEE Trans Image Process, 2004, 13: 1345-1357 · Zbl 1286.94022 · doi:10.1109/TIP.2004.834662
[44] Dong F F, Liu Z, Kong D X, et al. An improved lot model for image restoration. J Math Imag Vis, 2009, 34: 89-97 · doi:10.1007/s10851-008-0132-z
[45] Love E R. Fractional derivatives of imaginary order. J London Math Soc, 1971, 3: 241-259 · Zbl 0207.43902 · doi:10.1112/jlms/s2-3.2.241
[46] Oldham K B, Spanier J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974
[47] McBride A C. Fractional Calculus. New York: Halsted Press, 1986
[48] Nishimoto K. Fractional Calculus. New Haven: University of New Haven Press, 1989 · Zbl 0798.26005
[49] Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives. Yverdon: Gordon and Breach, 1993 · Zbl 0818.26003
[50] Miller K S. Derivatives of noninteger order. Math Mag, 1995, 68: 183-192 · Zbl 0837.26006 · doi:10.2307/2691413
[51] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, 75-85 (1992)
[52] Engheta N. On fractional calculus and fractional multipoles in electromagnetism. IEEE Antennas Propag Mag, 1996, 44: 554-566 · Zbl 0944.78506 · doi:10.1109/8.489308
[53] Engheta N. On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag Mag, 1997, 39: 35-46 · doi:10.1109/74.632994
[54] Chen M P, Srivastava H M. Fractional calculus operators and their applications involving power functions and summation of series. Appl Math Comput, 1997, 81: 287-304 · doi:10.1016/S0096-3003(95)00310-X
[55] Butzer P L, Westphal U. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000 · Zbl 0998.26002
[56] Kempfle S, Schaefer I, Beyer H R. Fractional calculus via functional calculus: theory and applications. Nonlinear Dyn, 2002, 29: 99-127 · Zbl 1026.47010 · doi:10.1023/A:1016595107471
[57] Richard L M. Fractional calculus in bioengineering, critical reviews in biomedical engineering. CRC Crit Rev Biomed Eng, 2004, 32: 1-377 · doi:10.1615/CritRevBiomedEng.v32.10
[58] Kilbas, A. A.; Srivastava, H. M.; Trujiilo, J. J., Theory and Applications of Fractional Differential Equations (2006)
[59] Sabatier J, Agrawal O P, Tenreiro Machado J A. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, 2007 · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[60] Koeller R C. Applications of the fractional calculus to the theory of viscoelasticity. J Appl Mech, 1984, 51: 294-298 · Zbl 0544.73052 · doi:10.1115/1.3167616
[61] Rossikhin Y A, Shitikova M V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev, 1997, 50: 15-67 · doi:10.1115/1.3101682
[62] Manabe S. A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dyn, 2002, 29: 251-268 · Zbl 1018.74028 · doi:10.1023/A:1016566017098
[63] Chen W, Holm S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency dependency. J Acoust Soc Amer, 2004, 115: 1424-1430 · doi:10.1121/1.1646399
[64] Perrin E, Harba R, Berzin-Joseph C, et al. Nth-order fractional Brownian motion and fractional Gaussian noises. IEEE Trans Signal Process, 2001, 49: 1049-1059 · doi:10.1109/78.917808
[65] Tseng C C. Design of fractional order digital FIR differentiators. IEEE Signal Process Lett, 2001, 8: 77-79 · doi:10.1109/97.905945
[66] Chen Y Q, Vinagre B M. A new IIR-type digital fractional order differentiator. Signal Process, 2003, 83: 2359-2365 · Zbl 1145.93423 · doi:10.1016/S0165-1684(03)00188-9
[67] Pu, Y. F., Research on application of fractional calculus to latest signal analysis and processing (2006)
[68] Pu Y F, Yuan X, Liao K, et al. Five numerical algorithms of fractional calculus applied in modern signal analyzing and processing. J Sichuan Univ (Eng Sci Ed), 2005, 37: 118-124
[69] Pu, Y. F.; Yuan, X.; Liao, K.; etal., Structuring analog fractance circuit for 1/2 order fractional calculus, 1039-1042 (2005)
[70] Pu Y F, Yuan X, Liao K, et al. Implement any fractional order neural-type pulse oscillator with net-grid type analog fractance circuit. J Sichuan Univ (Eng Sci Ed), 2006, 38: 128-132
[71] Duits, R.; Felsberg, M.; Florack, L.; etal., α scale spaces on a bounded domain, 494-510 (2003) · Zbl 1067.68732 · doi:10.1007/3-540-44935-3_34
[72] Didas S, Burgeth B, Imiya A, et al. Regularity and scale space properties of fractional high order linear filtering. Scale Space PDE Meth Comput Vis, 2005, 3459: 13-25 · Zbl 1119.68469 · doi:10.1007/11408031_2
[73] Unser M, Blu T. Fractional splines and wavelets. SIAM Rev, 2000, 42: 43-67 · Zbl 0940.41004 · doi:10.1137/S0036144598349435
[74] Ninness B. Estimation of 1/f noise. IEEE Trans Inf Theory, 1998, 44: 32-46 · Zbl 0905.94009 · doi:10.1109/18.650986
[75] Duits R, Florack L, Graaf J, et al. On the axioms of scale space theory. J Math Imag Vis, 2004, 20: 267-298 · Zbl 1435.94064 · doi:10.1023/B:JMIV.0000024043.96722.aa
[76] Mathieu B, Melchior P, Oustaloup A, et al. Fractional differentiation for edge detection. Signal Process, 2003, 83: 2421-2432 · Zbl 1145.94309 · doi:10.1016/S0165-1684(03)00194-4
[77] Liu S C, Chang S. Dimension estimation of discrete-time fractional brownian motion with applications to image texture classification. IEEE Trans Image Process, 1997, 6: 1176-1184 · doi:10.1109/83.605414
[78] Pu, Y. F., Fractional calculus approach to texture of digital image, 1002-1006 (2006)
[79] Pu Y F. Fractional Differential Filter of Digital Image. China Patent, ZL200610021702.3, 2006
[80] Pu Y F. High Precision Fractional Calculus Filter of Digital Image. China Patent, ZL201010138742.2, 2010
[81] Pu Y F, Wang W X, Zhou J L, et al. Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation. Sci China Ser F-Inf Sci, 2008, 38: 2252-2272
[82] Pu Y F, Zhou J L. A novel approach for multi-scale texture segmentation based on fractional differential. Int J Comput Math, 2011, 88: 58-78 · Zbl 1209.94013 · doi:10.1080/00207160903134263
[83] Pu Y F, Zhou J L, Yuan X. Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans Image Process, 2010, 19: 491-511 · Zbl 1371.94302 · doi:10.1109/TIP.2009.2035980
[84] Guidotti P, Lambers J V. Two new nonlinear nonlocal diffusions for noise reduction. J Math Imag Vis, 2009, 33: 25-37 · doi:10.1007/s10851-008-0108-z
[85] Bai J, Feng X C. Fractional-order anisotropic diffusion for image denoising. IEEE Trans Image Process, 2007, 16: 2492-2502 · Zbl 1119.76377 · doi:10.1109/TIP.2007.904971
[86] Vasily E T. Fractional vector calculus and fractional Maxwell’s equations. Ann Phys, 2008, 323: 2756-2778 · Zbl 1180.78003 · doi:10.1016/j.aop.2008.04.005
[87] Baleanu D, Machado J, Luo A J. Fractional Dynamics And Control. New York: Springer, 2011
[88] Agrawal O P. Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J Vib Control, 2007, 13: 1217-1237 · Zbl 1158.49006 · doi:10.1177/1077546307077472
[89] Snyman J. Practical Mathematical Optimization: an Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer, 2005 · Zbl 1104.90003
[90] Halmos P R. Measure Theory. Springer-Verlag, 1974 · Zbl 0283.28001
[91] Munroe M E. Introduction to Measure and Integration. Addison-Wesley, 1953. 25-90 · Zbl 0050.05603
[92] Tychonoff A N, Arsenin V Y. Solution of Ill-Posed Problems. Washington: Winston & Sons, 1977. 45-78
[93] Tomasi, C.; Manduchi, R., Bilateral filtering for gray and color images, 839-846 (1998)
[94] Zhang M, Gunturk B K. Multiresolution bilateral filtering for image denoising. IEEE Trans Image Process, 2008, 17: 2324-2333 · Zbl 1371.94455 · doi:10.1109/TIP.2008.2006658
[95] Yu H, Zhao L, Wang H. Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain. IEEE Trans Image Process, 2009, 18: 2364-2369 · Zbl 1371.94443 · doi:10.1109/TIP.2009.2026685
[96] Chen G Y, Bui T D. Multiwavelets denoising using neighboring coefficients. IEEE Signal Process Lett, 2003, 10: 211-214 · doi:10.1109/LSP.2003.811586
[97] Buades, A.; Coll, B.; Morel, J. M., A non-local algorithm for image denoising, 60-65 (2005) · Zbl 1108.94004
[98] Buades A, Coll B, Morel J M. Nonlocal image and movie denoising. Int J Comput Vis, 2008, 76: 123-139 · doi:10.1007/s11263-007-0052-1
[99] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error measurement to structural similarity. IEEE Trans Image Process, 2004, 13: 600-612 · doi:10.1109/TIP.2003.819861
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.