×

The impact of initial evenness on biodiversity maintenance for a four-species in silico bacterial community. (English) Zbl 1343.92536

Summary: Initial community evenness has been shown to be a key factor in preserving the functional stability of an ecosystem, but has not been accounted for in previous modelling studies. We formulate a model that allows the initial evenness of the community to be varied in order to investigate the consequent impact on system diversity. We consider a community of four interacting bacterial species, and present a stochastic, spatial individual-based model simulating the ecosystem dynamics. Interactions take place on a two-dimensional lattice. The model incorporates three processes: reproduction, competition and mobility. In addition to variable initial evenness, multiple competition schemes are implemented, modelling various possible communities, which results in diverse coexistence and extinction scenarios. Simulations show that long-term system behaviour is strongly dependent on initial evenness and competition structure. The system is generally unstable; higher initial evenness has a small stabilizing effect on ecosystem dynamics by extending the time until the first extinction.

MSC:

92D40 Ecology
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adamson, M.; Morozov, A., Revising the role of species mobility in maintaining biodiversity in communities with cyclic competition, Bull. Math. Biol., 74, 9, 2004-2031 (2012) · Zbl 1329.92097
[2] Beisel, J.-N.; Usseglio-Polatera, P.; Bachmann, V.; Moreteau, J.-C., A comparative analysis of evenness index sensitivity, Int. Rev. Hydrobiol., 88, 1, 3-15 (2003)
[3] Berec, L., Techniques of spatially explicit individual-based models: construction, simulation, and mean-field analysis, Ecol. Model., 150, 1, 55-81 (2002)
[4] Berr, M.; Reichenbach, T.; Schottenloher, M.; Frey, E., Zero-one survival behavior of cyclically competing species, Phys. Rev. Lett., 102, 4, 048102 (2009)
[5] Cases, S. O.; Durney, C. H.; Pleimling, M.; Zia, R., Cyclic competition of four speciesmean-field theory and stochastic evolution, EPL (Europhys. Lett.), 92, 5, 58003 (2010)
[7] Crowder, D.; Northfield, T.; Strand, M.; Snyder, W., Organic agriculture promotes evenness and natural pest control, Nature, 466, 7302, 109-112 (2010)
[8] Davidson, R., Reliable inference for the Gini index, J. Econom., 150, 1, 30-40 (2009) · Zbl 1429.91243
[9] De Deyn, G.; Raaijmakers, C.; Zoomer, H.; Berg, M.; de Ruiter, P.; Verhoef, H.; Bezemer, T.; van der Putten, W., Soil invertebrate fauna enhances grassland succession and diversity, Nature, 422, 6933, 711-713 (2003)
[10] De Roy, K.; Marzorati, M.; Negroni, A.; Thas, O.; Balloi, A.; Fava, F.; Verstraete, W.; Daffonchio, D.; Boon, N., Environmental conditions and community evenness determine the outcome of biological invasion, Nat. Commun., 4, 1383 (2013)
[11] Derry, A.; Staddon, W.; Trevors, J., Functional diversity and community structure of microorganisms in uncontaminated and creosote-contaminated soils as determined by sole-carbon-source-utilization, World J. Microbiol. Biotechnol., 14, 4, 571-578 (1998)
[12] Dobrinevski, A.; Frey, E., Extinction in neutrally stable stochastic Lotka-Volterra models, Phys. Rev. E, 85, 5, 051903 (2012)
[13] Doering, C.; Sargsyan, K.; Sander, L., Extinction times for birth-death processes: exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation, Multiscale Model. Simul., 3, 2, 283-299 (2005) · Zbl 1072.60092
[14] Durney, C.; Case, S.; Pleimling, M.; Zia, R., Saddles, arrows, and spiralsdeterministic trajectories in cyclic competition of four species, Phys. Rev. E, 83, 5, 051108 (2011)
[15] Durney, C.; Case, S.; Pleimling, M.; Zia, R., Stochastic evolution of four species in cyclic competition, J. Stat. Mech.: Theory Exp., 2012, 06, P06014 (2012)
[16] Dutton, R.; Brigham, R., A characterization of competition graphs, Discret. Appl. Math., 6, 3, 315-317 (1983) · Zbl 0521.05057
[17] Ebenman, B.; Jonsson, T., Using community viability analysis to identify fragile systems and keystone species, Trends Ecol. Evol., 20, 10, 568-575 (2005)
[18] Eliazar, I., Randomness, evenness, and Rényi׳s index, Phys. A: Stat. Mech. Appl., 390, 11, 1982-1990 (2011) · Zbl 1225.91046
[19] Eliazar, I.; Sokolov, I., Maximization of statistical heterogeneity: from Shannon׳s entropy to Gini׳s index, Phys. A: Stat. Mech. Appl., 389, 16, 3023-3038 (2010)
[20] Eliazar, I.; Sokolov, I., Measuring statistical evennessa panoramic overview, Phys. A: Stat.l Mech. Appl., 391, 4, 1323-1353 (2012)
[21] Ferrer, J.; Prats, C.; López, D., Individual-based modellingan essential tool for microbiology, J. Biol. Phys., 34, 1-2, 19-37 (2008)
[22] Frachebourg, L.; Krapivsky, P.; Ben-Naim, E., Spatial organization in cyclic Lotka-Volterra systems, Phys. Rev. E, 54, 6, 6186 (1996)
[23] Frey, E.; Reichenbach, T., Principles of Evolution (2011)
[24] Gibson, D., The relationship of sheep grazing and soil heterogeneity to plant spatial patterns in dune grassland, J. Ecol., 76, 233-252 (1988)
[25] Gilg, O.; Hanski, I.; Sittler, B., Cyclic dynamics in a simple vertebrate predator-prey community, Science, 302, 5646, 866-868 (2003)
[26] Gillespie, D., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 4, 403-434 (1976)
[27] Ginot, V.; Gaba, S.; Beaudouin, R.; Aries, F.; Monod, H., Combined use of local and ANOVA-based global sensitivity analyses for the investigation of a stochastic dynamic modelapplication to the case study of an individual-based model of a fish population, Ecol. Model., 193, 3, 479-491 (2006)
[28] Glendinning, P., Stability, Instability and ChaosAn Introduction to the Theory of Nonlinear Differential Equations (1994), Cambridge University Press
[29] Grime, J., Benefits of plant diversity to ecosystemsimmediate filter and founder effects, J. Ecol., 86, 6, 902-910 (1998)
[30] Guill, C.; Drossel, B.; Just, W.; Carmack, E., A three-species model explaining cyclic dominance of Pacific salmon, J. Theor. Biol., 276, 1, 16-21 (2011) · Zbl 1405.92286
[31] Harch, B.; Correll, R.; Meech, W.; Kirkby, C.; Pankhurst, C., Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities, J. Microbiol. Methods, 30, 1, 91-101 (1997)
[32] Harpole, W.; Suding, K., Frequency-dependence stabilizes competitive interactions among four annual plants, Ecol. Lett., 10, 12, 1164-1169 (2007)
[33] Heip, C., A new index measuring evenness, J. Mar. Biol. Assoc. U.K., 54, 03, 555-557 (1974)
[34] Hellweger, F.; Bucci, V., A bunch of tiny individuals—individual-based modelling for microbes, Ecol. Model., 220, 1, 8-22 (2009)
[35] Hill, M., Diversity and evennessa unifying notation and its consequences, Ecology, 54, 2, 427-432 (1973)
[36] Hillebrand, H.; Bennett, D.; Cadotte, M., Consequences of dominancea review of evenness effects on local and regional ecosystem processes, Ecology, 89, 6, 1510-1520 (2008)
[37] Hooper, D.; Chapin, F.; Ewel, J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.; Lodge, D.; Loreau, M.; Naeem, S.; Schmid, B.; Setala, H.; Symstad, A.; Vandermeer, J.; Wardle, D., Effects of biodiversity on ecosystem functioninga consensus of current knowledge, Ecol. Monogr., 75, 1, 3-35 (2005)
[38] Huston, M., Hidden treatments in ecological experimentsre-evaluating the ecosystem function of biodiversity, Oecologia, 110, 4, 449-460 (1997)
[39] Intoy, B.; Pleimling, M., Extinction in four species cyclic competition, J. Stat. Mech.: Theory Exp., 2013, 08, P08011 (2013) · Zbl 1456.92119
[40] Isbell, F.; Polley, H.; Wilsey, B., Biodiversity, productivity and the temporal stability of productivitypatterns and processes, Ecol. Lett., 12, 5, 443-451 (2009)
[41] Isbell, F.; Polley, H.; Wilsey, B., Species interaction mechanisms maintain grassland plant species diversity, Ecology, 90, 7, 1821-1830 (2009)
[42] Jackson, J.; Buss, L., Alleopathy and spatial competition among coral reef invertebrates, Proc. Natl. Acad. Sci. U.S.A., 72, 12, 5160-5163 (1975)
[43] Kerr, B.; Riley, M.; Feldman, M.; Bohannan, B., Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature, 418, 6894, 171-174 (2002)
[44] Kirkpatrick, S.; Gelatt, C.; Vecchi, M., Optimization using simulated annealing, Science, 220, 4598, 671-680 (1983) · Zbl 1225.90162
[45] Laird, R.; Schamp, B., Competitive intransitivity promotes species coexistence, Am. Nat., 168, 2, 182-193 (2006)
[46] Laird, R.; Schamp, B., Competitive intransitivity, population interaction structure, and strategy coexistence, J. Theor. Biol., 365, 149-158 (2015) · Zbl 1314.92132
[47] Lambert, P.; Aronson, J., Inequality decomposition analysis and the Gini coefficient revisited, Econ. J., 1221-1227 (1993)
[48] Lemieux, J.; Cusson, M., Effects of habitat-forming species richness, evenness, identity, and abundance on benthic intertidal community establishment and productivity, PLoS ONE, 9, 10, e109261 (2014)
[49] Lilburne, L.; Tarantola, S., Sensitivity analysis of spatial models, Int. J. Geogr. Inf. Sci., 23, 2, 151-168 (2009)
[50] Lütz, A.; Risau-Gusman, S.; Arenzon, J., Intransitivity and coexistence in four species cyclic games, J. Theor. Biol., 317, 286-292 (2013) · Zbl 1368.92150
[51] Magurran, A., Measuring Biological Diversity (2004), Blackwell Science Ltd: Blackwell Science Ltd Oxford, UK
[52] Mendes, R.; Evangelista, L.; Thomaz, S.; Agostinho, A.; Gomes, L., A unified index to measure ecological diversity and species rarity, Ecography, 31, 4, 450-456 (2008)
[53] Mouritsen, K.; Poulin, R., Parasites boosts biodiversity and changes animal community structure by trait-mediated indirect effects, Oikos, 108, 2, 344-350 (2005)
[54] Nadell, C.; Foster, K.; Xavier, J., Emergence of spatial structure in cell groups and the evolution of cooperation, PLoS Comput. Biol., 6, 3, e1000716 (2010)
[55] Parker, M.; Kamenev, A., Mean extinction time in predator-prey model, J. Stat. Phys., 141, 2, 201-216 (2010) · Zbl 1202.92086
[56] Polley, H.; Wilsey, B.; Derner, J., Do species evenness and plant density influence the magnitude of selection and complementarity effects in annual plant species mixtures?, Ecol. Lett., 6, 3, 248-256 (2003)
[57] Reardon, S.; Firebaugh, G., Measures of multigroup segregation, Sociol. Methodol., 32, 1, 33-67 (2002)
[58] Reichenbach, T.; Mobilia, M.; Frey, E., Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games, Nature, 448, 7157, 1046-1049 (2007)
[59] Reichenbach, T.; Mobilia, M.; Frey, E., Self-organization of mobile populations in cyclic competition, J. Theor. Biol., 254, 2, 368-383 (2008) · Zbl 1400.92443
[60] Rousseau, R.; van Hecke, P., Measuring biodiversity, Acta Biotheor., 47, 1, 1-5 (1999)
[61] Sinervo, B.; Lively, C., The rock-paper-scissors game and the evolution of alternative male strategies, Nature, 380, 6571, 240-243 (1996)
[62] Smith, B.; Wilson, J., A consumer׳s guide to evenness indices, Oikos, 70-82 (1996)
[63] Smith, M.; Knapp, A., Dominant species maintain ecosystem function with non-random species loss, Ecol. Lett., 6, 6, 509-517 (2003)
[64] Sobol, I., Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., 55, 1, 271-280 (2001) · Zbl 1005.65004
[66] Szabó, G.; Sznaider, G., Phase transition and selection in a four-species cyclic predator-prey model, Phys. Rev. E, 69, 3, 031911 (2004)
[67] Tuomisto, H., An updated consumer׳s guide to evenness and related indices, Oikos, 121, 8, 1203-1218 (2012)
[68] Vincke, S.; Van de Vijver, B.; Gremmen, N.; Beyens, L., The moss dwelling testacean fauna of the Stromness Bay (South Georgia), Acta Protozool., 45, 1, 65 (2006)
[69] Wilcove, D.; Rothstein, D.; Dubow, J.; Phillips, A.; Losos, E., Quantifying threats to imperiled species in the United States, BioScience, 48, 8, 607-615 (1998)
[70] Wills, C.; Harms, K.; Condit, R.; King, D.; Thompson, J.; He, F.; Muller-Landau, H.; Ashton, P.; Losos, E.; Comita, L., Nonrandom processes maintain diversity in tropical forests, Science, 311, 5760, 527-531 (2006)
[71] Wilsey, B.; Polley, H., Realistically low species evenness does not alter grassland species-richness-productivity relationships, Ecology, 85, 10, 2693-2700 (2004)
[72] Wilsey, B.; Potvin, C., Biodiversity and ecosystem functioningimportance of species evenness in an old field, Ecology, 81, 4, 887-892 (2000)
[73] Wilsey, B.; Teaschner, T.; Daneshgar, P.; Isbell, F.; Polley, H., Biodiversity maintenance mechanisms differ between native and novel exotic-dominated communities, Ecol. Lett., 12, 5, 432-442 (2009)
[74] Wittebolle, L.; Marzorati, M.; Clement, L.; Balloi, A.; Daffonchio, D.; Heylen, K.; De Vos, P.; Verstraete, W.; Boon, N., Initial community evenness favours functionality under selective stress, Nature, 458, 7238, 623-626 (2009)
[75] Zhang, Y.; Chen, H.; Reich, P., Forest productivity increases with evenness, species richness and trait variationa global meta-analysis, J. Ecol., 100, 3, 742-749 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.