×

Long-term transients and complex dynamics of a stage-structured population with time delay and the Allee effect. (English) Zbl 1343.92428

Summary: Traditionally, mathematical modeling in population ecology is mainly focused on asymptotic behavior of the model, i.e. as given by the system attractors. Recently, however, transient regimes and especially long-term transients have been recognized as playing a crucial role in the dynamics of ecosystems. In particular, long-term transients are a potential explanation of ecological regime shifts, when an apparently healthy population suddenly collapses and goes extinct. In this paper, we show that the interplay between delay in maturation and a strong Allee effect can result in long-term transients in a single species system. We first derive a simple ‘conceptual’ model of the population dynamics that incorporates both a strong Allee effect and maturation delay. Unlike much of the previous work, our approach is not empirical since our model is derived from basic principles. We show that the model exhibits a high complexity in its asymptotic dynamics including multi-periodic and chaotic attractors. We then show the existence of long-term transient dynamics in the system, when the population size oscillates for a long time between locally stable stationary states before it eventually settles either at the persistence equilibrium or goes extinct. The parametric space of the model is found to have a complex structure with the basins of attraction corresponding to the persistence and extinction states being of a complicated shape. This impedes the prediction of the eventual fate of the population, as a small variation in the maturation delay or the initial population size can either bring the population to extinction or ensure its persistence.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Adamson, M. W.; Morozov, A. Yu, When can we trust our model predictions? Unearthing structural sensitivity in biological systems, Proc. R. Soc. A, 469, 20120500 (2013) · Zbl 1371.92057
[2] Adamson, M. W.; Morozov, A. Yu, Bifurcation analysis of models with uncertain function specification: how should we proceed?, Bull. Math. Biol., 76, 1218-1240 (2014) · Zbl 1297.92059
[3] Aiello, W. G.; Freedman, H. I., A time-delay model of single-species growth with stage-structured, Math. Biosci., 101, 139 (1990) · Zbl 0719.92017
[4] Becks, L.; Hilker, F. M.; Malchow, H.; Jurgens, K.; Arndt, H., Experimental demonstration of chaos in a microbial food web, Nature, 435, 1226-1229 (2005)
[5] Begon, M.; Townsend, C. R.; Harper, J. L., Ecology: From Individuals to Ecosystems (2005), Blackwell Publishing: Blackwell Publishing London
[6] Beretta, E.; Kuang, Y., Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Anal. Theory Methods Appl., 32, 3, 381-408 (1998) · Zbl 0946.34061
[7] Bjornstad, O. N.; Grenfell, B. T., Noisy clockwork: time series analysis of population fluctuations in animals, Science, 293, 638-643 (2001)
[8] Boettiger, C.; Hastings, A., Quantifying limits to detection of early warning for critical transitions, J. R. Soc. Interface, 9, 2527-2539 (2012)
[9] Boukal, D. S.; Berec, L., Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters, J. Theor. Biol., 218, 375-394 (2002)
[10] Brezonik, P. L., Chemical Kinetics and Process Dynamics in Aquatic Systems (1993), CRC Press: CRC Press Boca Raton
[11] Carpenter, S. R., Regime Shifts in Lake Ecosystems: Pattern and Variation, 199 (2003), Ecology Institute: Ecology Institute Oldendorf/Luhe, Germany
[12] Cordoleani, F.; Nerini, D.; Gauduchon, M.; Morozov, A.; Poggiale, J.-C., Structural sensitivity of biological models revisited, J. Theor. Biol., 283, 82-91 (2011) · Zbl 1397.92565
[13] Costantino, R. F.; Desharnais, R. A.; Cushing, J. M.; Dennis, B., Chaotic dynamics in an insect population, Science, 275, 389-391 (1997) · Zbl 1225.37103
[14] Courchamp, F.; Clutton-Brock, T.; Grenfell, B., Inverse density dependence and the Allee effect, TREE, 14, 405-410 (1999)
[15] Courchamp, F.; Berec, J.; Gascoigne, J., Allee Effects in Ecology and Conservation (2008), Oxford University Press: Oxford University Press Oxford, New York, USA
[16] Cushing, J. M., Time delays in single species growth models, Journal of Mathematical Biology, 4, 3, 257-264 (1977) · Zbl 0356.92019
[17] Cushing, J. M.; Costantino, R. F.; Dennis, B.; Desharnais, R. A.; Henson, S. M., Chaos in Ecology: Experimental Nonlinear Dynamics (2003), Academic Press: Academic Press Amsterdam
[18] Cushing, J. M.; Dennis, R. A.; Desharnais, R. F.; Costantino, Moving toward an unstable equilibrium: saddle nodes in population systems, J. Anim. Ecol., 67, 298-306 (1998)
[19] Dennis, B., Allee effects: population growth, critical density, and the chance of extinction, Nat. Res. Model., 3, 481-538 (1989) · Zbl 0850.92062
[20] Ellner, S. P.; Turchin, P., Chaos in a noisy world: new methods and evidence from time series analysis, Am. Nat., 145, 343-375 (1995)
[21] Fussmann, G. F.; Blasius, B., Community response to enrichment is highly sensitive to model structure, Biol. Lett., 1, 9-12 (2005)
[22] Gopalsamy, K.; Ladas, G., On the oscillation and asymptotic behavior of \(\dot{N} \) (t)=N(t)[a+bN(t−τ)−cN2(t−τ)], Q. Appl. Math., 48, 433-440 (1990) · Zbl 0719.34118
[23] Gurney, W. S.C.; Nisbet, R. M.; Lawton, J. H., The systematic formulation of tractable single-species population models incorporating age structure, J. Anim. Ecol., 52, 479-495 (1983)
[24] Hansen, T. F.; Stenseth, N. C.; Henttonen, H.; Tast, J., Interspecific and intraspecific competition as causes of direct and delayed density dependence in a fluctuating vole population, Proc. Natl. Acad. Sci. USA, 96, 3, 986-991 (1998)
[25] Hastings, A., Delays in recruitment at different trophic levels: effects on stability, J. Math. Biol., 21, 1, 35-44 (1984) · Zbl 0547.92014
[26] Hastings, A., Transient dynamics and persistence of ecological systems, Ecol. Lett., 4, 215-220 (2001)
[27] Hastings, A., Transients: the key to long-term ecological understanding?, Trends Ecol. Evol., 19, 39-45 (2004)
[28] Hutchinson, G. E., Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50, 221-246 (1948)
[29] Ims, R. A.; Henden, J.-A.; Killengreen, S. T., Collapsing population cycles, Trends Ecol. Evol., 23, 2, 79-86 (2008)
[30] Jacobs, J., Cooperation, optimal density and low density thresholds: yet another modification of the logistic model, Oecologia, 64, 389-395 (1984)
[31] Jankovic, M.; Petrovskii, S., Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect, Theor. Ecol., 7, 335-349 (2014)
[32] Kéfi, S.; Guttal, V.; Brock, W. A.; Carpenter, S. R., Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns, Plos One, 9, 3, e92097 (2014)
[33] Kuang, Y., Delay Differential Equations With Applications in Population Dynamics (1993), Academic Press: Academic Press New York · Zbl 0777.34002
[34] Lai, Y. C.; Winslow, R. L., Geometric-properties of the chaotic saddle responsible for supertransients in spatiotemporal chaotic systems, Phys. Rev. Lett., 74, 5208-5211 (1995)
[35] Lewis, M. A.; Kareiva, P., Allee dynamics and the spread of invading organisms, Theor. Popul. Biol., 43, 141-158 (1993) · Zbl 0769.92025
[36] Liz, E.; Ruiz-Herrera, A., Delayed population models with Allee effects and exploitation, MBE, 12, 1, 83-97 (2015) · Zbl 1321.34107
[37] Luckinbill, L. S., The effects of space and enrichment on a predator-prey system, Ecology, 55, 1142-1147 (1974)
[38] Mackey, M. C.; Glass, L., Oscillation and chaos in physiological control systems, Science, 197, 4300, 287-289 (1977) · Zbl 1383.92036
[39] Maynard Smith, J., Models in Ecology (1974), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0312.92001
[40] May, R. M., Stability and Complexity in Model Ecosystems (2001), Princeton University Press: Princeton University Press Princeton
[41] Morozov, A.; Petrovskii, S. V., Feeding on multiple sources: towards a universal parameterization of the functional response of a generalist predator allowing for switching, Plos One, 8, 9, e74586 (2013)
[42] Murdoch, W. W.; Briggs, C. J.; Nisbet, R. M., Consumer-Resource Dynamics (2003), Princeton University Press: Princeton University Press Princeton
[43] Nicholson, A., An outline of the dynamics of animal populations, Aust. J. Zool., 2, 9-65 (1954)
[44] Odum, E. P.; Barrett, G. W., Fundamentals of Ecology (2005), Thompson Brooks/Cole: Thompson Brooks/Cole Belmont, CA
[45] Pascual, M., Computational ecology: from the complex to the simple and back, PLoS Comp. Biol., 1, e18 (2005)
[46] Petrovskii, S. V.; Petrovskaya, N. B., Computational ecology as an emerging science, Interface Focus, 2, 241-254 (2012)
[47] Ranta, E.; Kaitala, V.; Lindstrdm, J.; Linden, H., Synchrony in population dynamics, Proc. R. Soc. Lond. B, 262, 113-118 (1995)
[48] Rodrigues, L. A.D.; Mistro, D. C.; Petrovskii, S., Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system, Bull. Math. Biol., 73, 1812-1840 (2011) · Zbl 1220.92053
[49] Ruan, S., Delay differential equations in single species dynamics, (Arino, O.; etal., Delay Differential Equations and Applications (2006), Springer: Springer Berlin), 477-517 · Zbl 1130.34059
[50] Ruan, S., On nonlinear dynamics of predator-prey models with discrete delay, Math. Model. Nat. Phenom., 4, 140-188 (2009) · Zbl 1172.34046
[51] Scheffer, M., Ecology of Shallow Lakes (1998), Chapman and Hall: Chapman and Hall London
[52] Scheffer, M.; Carpenter, S.; Foley, J. A.; Folke, C.; Walkerk, B., Catastrophic shifts in ecosystems, Nature, 413, 591-596 (2001)
[53] Scheffer, M.; Bascompte, J.; Brock, W. A.; Brovkin, V.; Carpenter, S. R., Early-warning signals for critical transitions, Nature, 461, 53-59 (2009)
[54] Schreiber, S., Allee effects, chaotic transients, and unexpected extinctions, Theor. Pop. Biol., 64, 201-209 (2003) · Zbl 1104.92053
[55] Sen, M.; Banerjee, M.; Morozov, A., Stage-structured ratio-dependent predator-prey models revisited: When should the maturation lag result in systems’ destabilization?, Ecol. Complex., 19, 23-34 (2014)
[56] Sherratt, J. A.; Smith, M. J., Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models, R. Soc. Interface, 5, 22, 483-505 (2008)
[57] Smith, H., An Introduction to Delay Differential Equations with Applications to the Life Sciences (2011), Springer: Springer Berlin · Zbl 1227.34001
[58] Stephens, P. A.; Sutherland, W. J., Consequences of the Allee effect for behaviour, ecology and conservation, TREE, 14, 401-405 (1999)
[59] Takeuchi, Y., Global Dynamical Properties of Lotka-Volterra Systems (1996), World Scientific: World Scientific Singapore · Zbl 0844.34006
[60] Tilman, D.; May, R. M.; Lehman, C. L.; Nowak, M. A., Habitat destruction and the extinction debt, Nature, 371, 65-66 (1994)
[61] Turchin, P., Complex Population Dynamics: A Theoretical/Empirical Synthesis (2003), Princeton University Press: Princeton University Press Princeton · Zbl 1062.92077
[62] Widdicombe, C. E.; Eloire, D.; Harbour, D.; Harris, R. P.; Somerfield, P. J., Long-term phytoplankton community dynamics in the Western English Channel, J. Plankton Res., 32, 643-655 (2010)
[63] Yang, J.; Rasa, E.; Tantayotai, P.; Scow, K. M.; Yuan, H.; Hristova, K. R., Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions, Bioresour. Technol., 102, 3077-3082 (2011)
[64] Yoshida, T.; Jones, L. E.; Ellner, S. P.; Fussmann, G. F.; Hairston, N. G., Rapid evolution drives ecological dynamics in a predator‐prey system, Nature, 424, 303-306 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.