×

Finite \(N\) from resurgent large \(N\). (English) Zbl 1343.81201

Summary: Due to instanton effects, gauge-theoretic large \(N\) expansions yield asymptotic series, in powers of \(1/N^2\). The present work shows how to generically make such expansions meaningful via their completion into resurgent transseries, encoding both perturbative and nonperturbative data. Large \(N\) resurgent transseries compute gauge-theoretic finite \(N\) results nonperturbatively (no matter how small \(N\) is). Explicit calculations are carried out within the gauge theory prototypical example of the quartic matrix model. Due to integrability in the matrix model, it is possible to analytically compute (fixed integer) finite \(N\) results. At the same time, the large \(N\) resurgent transseries for the free energy of this model was recently constructed. Together, it is shown how the resummation of the large \(N\) resurgent transseries matches the analytical finite \(N\) results up to remarkable numerical accuracy. Due to lack of Borel summability, Stokes phenomena has to be carefully taken into account, implying that instantons play a dominant role in describing the finite \(N\) physics. The final resurgence results can be analytically continued, defining gauge theory for any complex value of \(N\).

MSC:

81T99 Quantum field theory; related classical field theories

Software:

DLMF
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] t Hooft, G., Nucl. Phys. B, 72, 461 (1974)
[2] Moshe, M.; Zinn-Justin, J., Phys. Rep., 385, 69 (2003)
[3] Maldacena, J. M., Adv. Theor. Math. Phys., 2, 231 (1998)
[4] Dijkgraaf, R.; Vafa, C., Nucl. Phys. B, 644, 3 (2002)
[5] Koplik, J.; Neveu, A.; Nussinov, S., Nucl. Phys. B, 123, 109 (1977)
[6] t Hooft, G., Comm. Math. Phys., 86, 449 (1982)
[7] Gross, D. J.; Periwal, V., Phys. Rev. Lett., 60, 2105 (1988)
[9] Stokes, G. G., Trans. Camb. Phil. Soc., 10, 106 (1864)
[11] Balian, R.; Parisi, G.; Voros, A., Phys. Rev. Lett., 41, 1141 (1978)
[13] Mariño, M., J. High Energy Phys., 0812, 114 (2008), arXiv:0805.3033 [hep-th]
[14] David, F., Nucl. Phys. B, 348, 507 (1991)
[15] David, F., Phys. Lett. B, 302, 403 (1993)
[16] Mariño, M.; Schiappa, R.; Weiss, M., Commun. Number Theory Phys., 2, 349 (2008), arXiv:0711.1954 [hep-th]
[17] Mariño, M.; Schiappa, R.; Weiss, M., J. Math. Phys., 50, 052301 (2009), arXiv:0809.2619 [hep-th]
[18] Aniceto, I.; Schiappa, R., Comm. Math. Phys., 335, 183 (2015), arXiv:1308.1115 [hep-th]
[19] Aniceto, I.; Schiappa, R.; Vonk, M., Commun. Number Theory Phys., 6, 339 (2012), arXiv:1106.5922 [hep-th]
[20] Candelpergher, B.; Nosmas, J. C.; Pham, F., Ann. Inst. Fourier (Grenoble), 43, 201 (1993)
[21] Seara, T. M.; Sauzin, D., Butl. Soc. Catalana Mat., 18, 131 (2003)
[22] Edgar, G. A., Real Anal. Exchange, 35, 253 (2009), arXiv:0801.4877 [math.RA]
[23] Écalle, J., Prépub. Math. Université Paris-Sud, 81-05 (1981), 81-06 (1981), 85-05 (1985)
[24] Mariño, M.
[25] Pasquetti, S.; Schiappa, R., Ann. Henri Poincaré, 11, 351 (2010), arXiv:0907.4082 [hep-th]
[26] Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge University Press · Zbl 1198.00002
[28] Maldacena, J. M.; Moore, G. W.; Seiberg, N.; Shih, D., J. High Energy Phys., 0410, 020 (2004)
[30] Bessis, D.; Itzykson, C.; Zuber, J. B., Adv. Appl. Math., 1, 109 (1980)
[31] Schiappa, R.; Vaz, R., Comm. Math. Phys., 330, 655 (2014), arXiv:1302.5138 [hep-th]
[32] Zinn-Justin, J., Phys. Rep., 70, 109 (1981)
[33] Garoufalidis, S.; Its, A.; Kapaev, A.; Mariño, M., Int. Math. Res. Not., 2012, 561 (2012), arXiv:1002.3634 [math.CA]
[34] Klemm, A.; Mariño, M.; Rauch, M., J. High Energy Phys., 1010, 004 (2010), arXiv:1002.3846 [hep-th]
[35] Pestun, V., Comm. Math. Phys., 313, 71 (2012), arXiv:0712.2824 [hep-th]
[37] Dunne, G. V.; Ünsal, M., J. High Energy Phys., 1211, 170 (2012), arXiv:1210.2423 [hep-th]
[38] Dunne, G. V.; Ünsal, M., Phys. Rev. D, 87, 025015 (2013), arXiv:1210.3646 [hep-th]
[40] Mariño, M., J. High Energy Phys., 0803, 060 (2008)
[46] Brézin, E.; Itzykson, C.; Parisi, G.; Zuber, J. B., Comm. Math. Phys., 59, 35 (1978)
[47] Ambjørn, J.; Chekhov, L.; Kristjansen, C. F.; Makeenko, Yu., Nucl. Phys. B. Nucl. Phys. B, Nucl. Phys. B, 449, 681 (1995), Erratum
[48] Eynard, B.; Orantin, N., Commun. Number Theory Phys., 1, 347 (2007)
[49] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers (1978), Mc-Graw Hill, Springer-Verlag (1999) · Zbl 0417.34001
[50] Drukker, N.; Mariño, M.; Putrov, P., J. High Energy Phys., 1111, 141 (2011), arXiv:1103.4844 [hep-th]
[54] Berry, M., NATO ASI Ser. B, 284, 1 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.