×

zbMATH — the first resource for mathematics

From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. (English) Zbl 1343.74004
Summary: We propose a construction method of non-homogeneous solutions for the traction problem of an elastic damaging bar. This bar has a softening behavior that obeys a gradient damaged model. The method is applicable for a wide range of brittle materials. For sufficiently long bars, we show that localization arises on sets whose length is proportional to the material internal length and with a profile that is also a material characteristic. From its onset until the rupture, the damage profile is obtained either in a closed form or after a simple numerical integration depending on the model. Thus, the proposed method provides definitions for the critical stress and fracture energy that can be compared with experimental results. We finally discuss some features of the global behavior of the bar such as the possibility of a snapback at the onset of damage. We point out the sensitivity of the responses to the parameters of the damage law. All these theoretical considerations are illustrated by numerical examples.

MSC:
74A45 Theories of fracture and damage
74R99 Fracture and damage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bažant Z.P., Belytschko T., Chang T.P.: Continuum theory for strain-softening. J. Eng. Mech. 110, 1666–1692 (1984) · doi:10.1061/(ASCE)0733-9399(1984)110:12(1666)
[2] Bažant Z.P., Pijaudier-Cabot G.: ’Non-local continum damage; localization instability and convergence’. J. Appl. Mech. ASME 55, 287–294 (1988) · Zbl 0663.73075 · doi:10.1115/1.3173674
[3] Benallal, A., Billardon, R.,Geymonat, G.: Bifurcation and localization in rate independent materials. In: Nguyen, Q. C.S.I.M Lecture Notes on Bifurcation and Stability of Dissipative Systems, Springer, Berlin (1993) · Zbl 0659.73021
[4] Benallal A., Marigo J.-J.: Bifurcation and stability issues in gradient theories with softening. Modelling Simul. Mater. Sci. Eng. 15, 283–295 (2007) · doi:10.1088/0965-0393/15/1/S22
[5] Bourdin B., Francfort G., Marigo J.-J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008) · Zbl 1176.74018 · doi:10.1007/s10659-007-9107-3
[6] Charlotte, M., Francfort, G., Marigo, J.-J., Truskinovsky, L.: ’Revisiting brittle fracture as an energy minimization problem: Comparisons of Griffith and Barenblatt surface energy models’. In: Benallal, A. (ed.) Continuous Damage and Fracture: Proceedings of the symposium, Cachan, France 23–27 octobre 2000. Elsevier. (2000)
[7] Comi C.: On localisation in ductile-brittle materials under compressive loadings. Euro. J. Mech. A/Solids 14, 19–43 (1995) · Zbl 0836.73053
[8] Comi C.: A non-local model with tension and compression damage mechanisms. Euro. J. Mech. A/Solids 20, 1–22 (2001) · Zbl 0982.74005 · doi:10.1016/S0997-7538(00)01111-6
[9] Comi C., Perego U.: Fracture energy based bi-dissipative damage model for concrete. Int J Solids Struct 38(36–37), 6427–6454 (2001) · Zbl 0996.74069 · doi:10.1016/S0020-7683(01)00066-X
[10] de Borst R., Sluys L., Mühlhaus H.-B., Pamin J.: Fundamental issues in finite element analysis of localization of deformation. Eng. Comp. 10, 99–121 (1993) · doi:10.1108/eb023897
[11] DeSimone A., Marigo J.-J., Teresi L.: A damage mechanics approach to stress softening and its application to rubber. Euro. J. Mech. A/Solids 20(6), 873–892 (2001) · Zbl 1008.74005 · doi:10.1016/S0997-7538(01)01171-8
[12] Francfort G., Marigo J.-J.: Stable damage evolution in a brittle continuous medium. Euro. J. Mech. A/Solids 12, 149–189 (1993) · Zbl 0772.73059
[13] Francfort G., Marigo J.-J.: Revisiting brittle fracture as an energy minimization. J. Mech. Phys. Solids 46, 1319–1342 (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[14] Lasry D., Lasry D.: Localization limiters in transient problems. Int. J. Solids Struct. 24, 581–587 (1988) · Zbl 0636.73021 · doi:10.1016/0020-7683(88)90059-5
[15] Lorentz E., Andrieux S.: Analysis of non-local models through energetic formulations. Int. J. Solids Struct. 40, 2905–2936 (2003) · Zbl 1038.74506 · doi:10.1016/S0020-7683(03)00110-0
[16] Lorentz E., Cuvilliez S., Kazymyrenko K.: Convergence of a gradient damage model toward a cohesive zone model. Comptes Rendus Mécanique 339(1), 20–26 (2011) · Zbl 1405.74031 · doi:10.1016/j.crme.2010.10.010
[17] Marigo J.-J.: Constitutive relations in plasticity, damage and fracture mechanics based on a work property. Nuclear Eng. Design 114, 249–272 (1989) · doi:10.1016/0029-5493(89)90105-2
[18] Marigo, J.-J.: From Clausius-Duhem and Drucker-Ilyushin inequalities to standard materials. In: Maugin, G.A., Drouot, R., Sidoroff, F. Continuum Thermodynamics: The Art and Science of Modelling Material Behaviour, vol. 76 of Solids Mechanics and Its Applications: Paul Germain’s Anniversary, Kluwer, The Netherlands (2000)
[19] Marigo J.-J., Truskinovsky L.: Initiation and propagation of fracture in the models of Griffith and Barenblatt. Contin. Mech. Thermodyn. 16(4), 391–409 (2004) · Zbl 1066.74007 · doi:10.1007/s00161-003-0164-y
[20] Mielke, A.: Evolution of rate-independent systems. In: Evolutionary equations, vol. II of Handb. Differ. Equ. Amsterdam: Elsevier/North-Holland, pp. 461–559 (2005) · Zbl 1120.47062
[21] Nguyen Q.: Bifurcation and postbifurcation analysis in plasticity and brittle fracture. J. Mech. Phys. Solids 35, 303–324 (1987) · Zbl 0608.73091 · doi:10.1016/0022-5096(87)90010-X
[22] Nguyen Q.S.: Stability and Nonlinear Solid Mechanics. Wiley, London (2000)
[23] Peerlings R., de Borst R., Brekelmans W., de Vree J., Spee I.: Some observations on localisation in non-local and gradient damage models. Eur. J. Mech. A/Solids 15, 937–953 (1996) · Zbl 0891.73055
[24] Peerlings R., de Borst R., Brekelmans W., Geers M.: Wave propagation and localisation in nonlocal and gradient-enhanced damage models. J. de Physique IV 8, 293–300 (1998)
[25] Pham K., Amor H., Marigo J.-J., Maurini C.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20(4), 618–652 (2011) · doi:10.1177/1056789510386852
[26] Pham K., Marigo J.-J.: Approche variationnelle de l’endommagement: I. Les concepts fondamentaux. Comptes Rendus Mécanique 338(4), 191–198 (2010) · Zbl 1300.74046 · doi:10.1016/j.crme.2010.03.009
[27] Pham K., Marigo J.-J.: Approche variationnelle de l’endommagement: II. Les modèles à gradient’. Comptes Rendus Mécanique 338(4), 199–206 (2010) · Zbl 1300.74047 · doi:10.1016/j.crme.2010.03.012
[28] Pham K., Marigo J.-J., Maurini C.: ’The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models’. J. Mech. Phys. Solids 59(6), 1163–1190 (2011) · Zbl 1270.74015 · doi:10.1016/j.jmps.2011.03.010
[29] Pijaudier-Cabot G., Bažant Z.P.: Non-local damage theory. J. Eng. Mech. 113, 1512–1533 (1987) · doi:10.1061/(ASCE)0733-9399(1987)113:10(1512)
[30] Pijaudier-Cabot G., Benallal A.: Strain localization and bifurcation in a non-local continuum. Int. J. Solids Struct. 30, 1761–1775 (1993) · Zbl 0799.73005 · doi:10.1016/0020-7683(93)90232-V
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.