×

A note on a local limit theorem for Wiener space valued random variables. (English) Zbl 1343.60016

Summary: We prove a local limit theorem, that is, a central limit theorem for densities, for a sequence of independent and identically distributed random variables taking values in an abstract Wiener space. The common law of these random variables is assumed to be absolutely continuous with respect to the reference Gaussian measure. We begin by showing that the key roles of scaling operator and convolution product in this infinite-dimensional Gaussian framework are played by the Ornstein-Uhlenbeck semigroup and Wick product, respectively. We proceed by establishing a necessary condition on the density of the random variables for the local limit theorem to hold true. We then reverse the implication and prove under an additional assumption the desired \(\mathcal{L}^{1}\)-convergence of the density of \(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\). We close the paper comparing our result with certain Berry-Esseen bounds for multidimensional central limit theorems.

MSC:

60F05 Central limit and other weak theorems
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Barron, A.R. (1986). Entropy and the central limit theorem. Ann. Probab. 14 336-342. · Zbl 0599.60024 · doi:10.1214/aop/1176992632
[2] Bentkus, V. (2003). On the dependence of the Berry-Esseen bound on dimension. J. Statist. Plann. Inference 113 385-402. · Zbl 1017.60023 · doi:10.1016/S0378-3758(02)00094-0
[3] Bloznelis, M. (2002). A note on the multivariate local limit theorem. Statist. Probab. Lett. 59 227-233. · Zbl 1016.60005 · doi:10.1016/S0167-7152(02)00125-6
[4] Bogachev, V.I. (1998). Gaussian Measures. Mathematical Surveys and Monographs 62 . Providence, RI: Amer. Math. Soc.
[5] Davydov, Y. (1992). A variant of an infinite-dimensional local limit theorem. Journal of Soviet Mathematics [1] 61 1853-1856.
[6] Da Pelo, P., Lanconelli, A. and Stan, A.I. (2011). A Hölder-Young-Lieb inequality for norms of Gaussian Wick products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14 375-407. · Zbl 1230.44002 · doi:10.1142/S0219025711004456
[7] Da Pelo, P., Lanconelli, A. and Stan, A.I. (2013). An Itô formula for a family of stochastic integrals and related Wong-Zakai theorems. Stochastic Process. Appl. 123 3183-3200. · Zbl 1291.60116 · doi:10.1016/j.spa.2013.03.005
[8] Gnedenko, B.V. (1954). A local limit theorem for densities. Dokl. Akad. Nauk SSSR 95 5-7.
[9] Holden, H., Øksendal, B., Ubøe, J. and Zhang, T. (2010). Stochastic Partial Differential Equations : A Modeling , White Noise Functional Approach , 2nd ed. Universitext . New York: Springer. · Zbl 1198.60005 · doi:10.1007/978-0-387-89488-1
[10] Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129 . Cambridge: Cambridge Univ. Press. · Zbl 0887.60009 · doi:10.1017/CBO9780511526169
[11] Lanconelli, A. and Sportelli, L. (2012). Wick calculus for the square of a Gaussian random variable with application to Young and hypercontractive inequalities. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 1250018, 16. · Zbl 1257.33013 · doi:10.1142/S021902571250018X
[12] Lanconelli, A. and Stan, A.I. (2010). Some norm inequalities for Gaussian Wick products. Stoch. Anal. Appl. 28 523-539. · Zbl 1202.60118 · doi:10.1080/07362991003708846
[13] Lanconelli, A. and Stan, A.I. (2013). A Hölder inequality for norms of Poissonian Wick products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 , 39. · Zbl 1279.60087 · doi:10.1142/S0219025713500227
[14] Linnik, Ju.V. (1959). An information-theoretic proof of the central limit theorem with Lindeberg conditions. Theory Probab. Appl. 4 288-299. · Zbl 0097.13103 · doi:10.1137/1104028
[15] Nelson, E. (1973). The free Markoff field. J. Funct. Anal. 12 211-227. · Zbl 0273.60079 · doi:10.1016/0022-1236(73)90025-6
[16] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Probability and Its Applications ( New York ). Berlin: Springer. · Zbl 1099.60003 · doi:10.1007/3-540-28329-3
[17] Prohorov, Yu.V. (1952). A local theorem for densities. Dokl. Akad. Nauk SSSR 83 797-800. · Zbl 0046.35301
[18] Ranga Rao, R. and Varadarajan, V.S. (1960). A limit theorem for densities. Sankhyā 22 261-266. · Zbl 0101.11603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.