×

zbMATH — the first resource for mathematics

Colored knot polynomials for arbitrary pretzel knots and links. (English) Zbl 1343.57007
Summary: A very simple expression is conjectured for arbitrary colored Jones and HOMFLY polynomials of a rich \((g+1)\)-parametric family of pretzel knots and links. The answer for the Jones and HOMFLY is fully and explicitly expressed through the Racah matrix of \(U_q(\mathrm{SU}_N)\), and looks related to a modular transformation of toric conformal block.

MSC:
57M25 Knots and links in the \(3\)-sphere (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Alexander, J. W.; Conway, J. H.; Jones, V. F.R.; Jones, V. F.R.; Jones, V. F.R.; Kauffman, L.; Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W. B.R.; Millet, K.; Ocneanu, A.; Przytycki, J. H.; Traczyk, K. P., Algebraic properties, (Leech, John, Computational Problems in Abstract Algebra, Proc. Conf., Oxford, 1967, (1970), Pergamon Press Oxford-New York), Invent. Math., Bull. Am. Math. Soc., Ann. Math., Topology, Bull. Am. Math. Soc., Kobe J. Math., 4, 2, 115-139, (1987)
[2] Witten, E., Commun. Math. Phys., 121, 351, (1989)
[3] Guadagnini, E.; Martellini, M.; Mintchev, M.; Guadagnini, E.; Martellini, M.; Mintchev, M.; Reshetikhin, N. Yu.; Turaev, V. G., Proc. Quantum Groups, Phys. Lett. B, Commun. Math. Phys., 127, 1-26, (1990) · Zbl 0722.57003
[4] Kaul, R. K.; Govindarajan, T. R.; Ramadevi, P.; Govindarajan, T. R.; Kaul, R. K.; Ramadevi, P.; Govindarajan, T. R.; Kaul, R. K.; Ramadevi, P.; Sarkar, T.; Zodinmawia; Ramadevi, P.; Zodinmawia; Ramadevi, P.; Nawata, S.; Ramadevi, P.; Zodinmawia, Nucl. Phys. B, Nucl. Phys. B, Nucl. Phys. B, Nucl. Phys. B, Nucl. Phys. B, J. High Energy Phys., J. Knot Theory Ramif., 22, 1350078-242, (2013) · Zbl 1296.57015
[5] Mironov, A.; Morozov, A.; Morozov, An.; Mironov, A.; Morozov, A.; Morozov, An.; Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, An.; Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An.; Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, An.; Anokhina, A.; Mironov, A.; Morozov, A.; Morozov, An.; Anokhina, A.; Morozov, An., Strings, gauge fields, and the geometry behind: the legacy of Maximilian kreuzer, J. High Energy Phys., Int. J. Mod. Phys. A, Nucl. Phys. B, Int. J. Mod. Phys. A, Theor. Math. Phys., Adv. High Energy Phys., 2013, 931830-58, (2013), World Scientific Publishing Co. Pte. Ltd. · Zbl 1262.81073
[6] Galakhov, D.; Mironov, A.; Morozov, A., J. Exp. Theor. Phys., (2015)
[7] Kawauchi, A., Survey on knot theory, (1996), Springer
[8] Hara, M.; Yamamoto, M., J. Knot Theory Ramif., 21, 1250127, (2012)
[9] A.N. Kirillov, N.Yu. Reshetikhin, Representations of the algebra \(U q(2)\), q-orthogonal polynomials and invariants of links, preprint, 1988.
[10] Mironov, A.; Morozov, A.; Sleptsov, A.
[11] Dunin-Barkowski, P.; Mironov, A.; Morozov, A.; Sleptsov, A.; Smirnov, A., J. High Energy Phys., 03, 021, (2013)
[12] Gukov, S.; Stosic, M., Proc. Symp. Pure Math., 85, 125-172, (2012)
[13] Itoyama, H.; Mironov, A.; Morozov, A.; Morozov, An., J. High Energy Phys., 2012, 131, (2012)
[14] Morozov, A., Theor. Math. Phys., 173, 1, 1417-1437, (2012)
[15] Galakhov, D.; Melnikov, D.; Mironov, A.; Morozov, A.
[16] Mironov, A.; Morozov, A.; Morozov, An., AIP Conf. Proc., 1562, 123, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.