×

zbMATH — the first resource for mathematics

Existence and global attractivity of a positive periodic solution for a non-autonomous predator-prey model under viral infection. (English) Zbl 1342.92220

MSC:
92D25 Population dynamics (general)
92D30 Epidemiology
34C25 Periodic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Wen, Chaos Solitons Fractals 33, 971 (2007). genRefLink(128, ’rf1’, ’000246259400029’);
[2] S. J. Dong and W. G. Ge, Acta Math. Appl. Sinica 24, 132 (2004). genRefLink(128, ’rf2’, ’000292854900008’);
[3] M. Kouche and N. Tatar, Appl. Math. Modell. 31, 780 (2007), DOI: 10.1016/j.apm.2005.12.010. genRefLink(16, ’rf3’, ’10.1016%252Fj.apm.2005.12.010’); genRefLink(128, ’rf3’, ’000242925300013’); · doi:10.1016/j.apm.2005.12.010
[4] H. G. Zhu, K. Wand and X. J. Li, Nonlinear Anal. 8, 872 (2007). genRefLink(16, ’rf4’, ’10.1016%252Fj.nonrwa.2006.03.011’); genRefLink(128, ’rf4’, ’000245444200012’);
[5] H. F. Huo, W. T. Li and J. J. Nieto, Chaos Solitons Fractals 33, 505 (2007), DOI: 10.1016/j.chaos.2005.12.045. genRefLink(16, ’rf5’, ’10.1016%252Fj.chaos.2005.12.045’); genRefLink(128, ’rf5’, ’000246057800017’); · doi:10.1016/j.chaos.2005.12.045
[6] J. Sugie and M. Katayama, Nonlinear Anal. 38, 105 (1999), DOI: 10.1016/S0362-546X(99)00099-1. genRefLink(16, ’rf6’, ’10.1016%252FS0362-546X%252899%252900099-1’); genRefLink(128, ’rf6’, ’000081022200008’); · doi:10.1016/S0362-546X(99)00099-1
[7] F. D. Chen and M. S. You, Nonlinear Anal. 9, 207 (2008). genRefLink(16, ’rf7’, ’10.1016%252Fj.nonrwa.2006.09.009’); genRefLink(128, ’rf7’, ’000253362200001’);
[8] R. Xu, M. A. J. Chaplain and F. A. Davidson, Appl. Math. Comput. 158, 729 (2004), DOI: 10.1016/j.amc.2003.10.012. genRefLink(16, ’rf8’, ’10.1016%252Fj.amc.2003.10.012’); genRefLink(128, ’rf8’, ’000224707600009’); · doi:10.1016/j.amc.2003.10.012
[9] J. J. Jiao and L. S. Chen, Int. J. Biomath. 1, 197 (2008), DOI: 10.1142/S1793524508000163. [Abstract] genRefLink(128, ’rf9’, ’A19632844B00009’); · doi:10.1142/S1793524508000163
[10] L. T. Han, Z. Ma and H. W. Hethcote, Math. Comput. Modell. 34, 849 (2001), DOI: 10.1016/S0895-7177(01)00104-2. genRefLink(16, ’rf10’, ’10.1016%252FS0895-7177%252801%252900104-2’); genRefLink(128, ’rf10’, ’000171343000013’); · doi:10.1016/S0895-7177(01)00104-2
[11] S. Bhatacharyya and D. K. Bhattacharyya, J. Theor. Biol. 238, 177 (2006), DOI: 10.1016/j.jtbi.2005.05.019. genRefLink(16, ’rf11’, ’10.1016%252Fj.jtbi.2005.05.019’); genRefLink(128, ’rf11’, ’000234154200016’); · doi:10.1016/j.jtbi.2005.05.019
[12] S. Ghosh, S. Bhattacharyya and D. K. Bhattacharya, Math. Biosci. 210, 619 (2007), DOI: 10.1016/j.mbs.2007.07.002. genRefLink(16, ’rf12’, ’10.1016%252Fj.mbs.2007.07.002’); genRefLink(128, ’rf12’, ’000251926800013’); · doi:10.1016/j.mbs.2007.07.002
[13] S. Ghosh and S. Bhattacharyya, J. Theor. Biol. 247, 50 (2007), DOI: 10.1016/j.jtbi.2007.02.009. genRefLink(16, ’rf13’, ’10.1016%252Fj.jtbi.2007.02.009’); genRefLink(128, ’rf13’, ’000247490000005’); · doi:10.1016/j.jtbi.2007.02.009
[14] Y. S. Tan and L. Chen , Chaos Solitons Fractals , DOI: 10.1016/j.chaos.2007.01.098. · doi:10.1016/j.chaos.2007.01.098
[15] R. E. Gaines and J. L. Mawhin , Coincidence Degree and Nonlinear Differential Equation ( Springer Verlag , Berlin , 1971 ) . · Zbl 0339.47031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.