×

zbMATH — the first resource for mathematics

Population models with Allee effect: a new model. (English) Zbl 1342.92166
Summary: In this paper, we develop several population models with Allee effects. We start by defining the Allee effect as a phenomenon in which individual fitness increases with increasing density. Based on this biological assumption, we develop several fitness functions that produce corresponding models with Allee effects. In particular, a rational fitness function yields a new mathematical model, which is the focus of our study. Then we study the dynamics of 2-periodic systems with Allee effects and show the existence of an asymptotically stable 2-periodic carrying capacity.

MSC:
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allee W. C., The Social Life of Animals (1938)
[2] Allee W. C., Principles of Animal Ecology (1949)
[3] DOI: 10.1016/j.tpb.2008.11.001 · Zbl 1210.92035 · doi:10.1016/j.tpb.2008.11.001
[4] DOI: 10.1080/10236190701565610 · Zbl 1144.39011 · doi:10.1080/10236190701565610
[5] DOI: 10.1093/acprof:oso/9780198570301.001.0001 · doi:10.1093/acprof:oso/9780198570301.001.0001
[6] Cushing J. M., Mathematical Ecology pp 479– (1988)
[7] DOI: 10.1080/10236190108808308 · Zbl 1002.39003 · doi:10.1080/10236190108808308
[8] DOI: 10.1080/1023619021000053980 · Zbl 1023.39013 · doi:10.1080/1023619021000053980
[9] Elaydi S., Discrete Chaos: With Applications in Science and Engineering, 2. ed. (2008)
[10] DOI: 10.1080/10236190410001731443 · doi:10.1080/10236190410001731443
[11] DOI: 10.1016/j.jde.2003.10.024 · Zbl 1067.39003 · doi:10.1016/j.jde.2003.10.024
[12] Elaydi, S. and Sacker, R. Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing–Henson conjectures. Proceedings of the eighth International Conference on Difference Equations and Applications. 2003, Brno. pp.113–126. Boca Raton, FL: Chapman & Hall/CRC. · Zbl 1087.39504
[13] DOI: 10.1080/10236190412331335418 · Zbl 1084.39005 · doi:10.1080/10236190412331335418
[14] DOI: 10.1016/j.tpb.2007.03.004 · Zbl 1125.92053 · doi:10.1016/j.tpb.2007.03.004
[15] DOI: 10.1006/jtbi.2001.2486 · doi:10.1006/jtbi.2001.2486
[16] DOI: 10.1007/s10884-005-8273-x · Zbl 1093.39002 · doi:10.1007/s10884-005-8273-x
[17] DOI: 10.1016/S0167-2789(99)00231-6 · Zbl 0957.37018 · doi:10.1016/S0167-2789(99)00231-6
[18] DOI: 10.1080/10236190500539238 · Zbl 1088.92058 · doi:10.1080/10236190500539238
[19] DOI: 10.1080/10236190412331335463 · Zbl 1084.39007 · doi:10.1080/10236190412331335463
[20] DOI: 10.1080/10236190410001703949 · doi:10.1080/10236190410001703949
[21] DOI: 10.1080/10236190601079191 · Zbl 1110.92050 · doi:10.1080/10236190601079191
[22] Luís R., J. Difference Equ. Appl.
[23] DOI: 10.1080/10236190601008752 · Zbl 1108.37304 · doi:10.1080/10236190601008752
[24] DOI: 10.1016/S0040-5809(03)00072-8 · Zbl 1104.92053 · doi:10.1016/S0040-5809(03)00072-8
[25] Sharkovsky A. N., Difference Equations and Their Applications (1993) · doi:10.1007/978-94-011-1763-0
[26] Stephens P. A., Vertebrate Mating Systems pp 186– (2000) · doi:10.1142/9789812793584_0009
[27] DOI: 10.2307/3547011 · doi:10.2307/3547011
[28] DOI: 10.1080/10236190601079076 · Zbl 1118.92056 · doi:10.1080/10236190601079076
[29] DOI: 10.1016/j.tpb.2004.06.007 · Zbl 1072.92060 · doi:10.1016/j.tpb.2004.06.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.