×

zbMATH — the first resource for mathematics

Spatiotemporal dynamics of pattern formation in the primary visual cortex and hallucinations. (English) Zbl 1342.92032
Summary: The existence of visual hallucinations with prominent temporal oscillations is well documented in conditions such as Charles Bonnett syndrome. To explore these phenomena, a continuum model of cortical activity that includes additional physiological features of axonal propagation and synapto-dendritic time constants, is used to study the generation of hallucinations featuring both temporal and spatial oscillations. A detailed comparison of the physiological features of this model with those of two others used previously in the modeling of hallucinations is made, and differences, particularly regarding temporal dynamics, relevant to pattern formation are analyzed. Linear analysis and numerical calculation are then employed to examine the pattern forming behavior of this new model for two different forms of spatiotemporal coupling between neurons. Numerical calculations reveal an oscillating mode whose frequency depends on synaptic, dendritic, and axonal time constants not previously simultaneously included in such analyses. Its properties are qualitatively consistent with descriptions of a number of physiological disorders and conditions with temporal dynamics, but the analysis implies that corticothalamic effects will need to be incorporated to treat the consequences quantitatively.

MSC:
92C15 Developmental biology, pattern formation
92C20 Neural biology
92C50 Medical applications (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amos JF (1999) Differential diagnosis of common etiologies of photopsia. J Am Optom Assoc 70: 485–504
[2] Becker C, Elliott MA (2006) Flicker-induced color and form: interdependencies and relation to stimulation frequency and phase. Conscious Cogn 15: 175–196 · doi:10.1016/j.concog.2005.05.004
[3] Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17: 2112–2127
[4] Bressloff PC (2003) Spatially periodic modulation of cortical patterns by long-range horizontal connections. Phys D 185: 131–157 · Zbl 1030.92006 · doi:10.1016/S0167-2789(03)00238-0
[5] Bressloff PC, Coombes S (1997) Physics of the extended neuron. Int J Mod Phys B 11: 2343–2392 · doi:10.1142/S0217979297001209
[6] Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ (2001a) Scalar and pseudoscalar bifurcations motivated by pattern formation on the visual cortex. Nonlinearity 14: 739–775 · Zbl 1017.37025 · doi:10.1088/0951-7715/14/4/305
[7] Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2001b) Geometric visual hallucinations, euclidean symmetry and the functional architecture of striate cortex. Philos Trans R Soc Lond B 356: 299–330 · doi:10.1098/rstb.2000.0769
[8] Brown GC, Murphy RP (1992) Visual symptoms associated with choroidal neovascularization. Photopsias and the Charles Bonnet Syndrome. Arch Ophthalmol 110: 1251–1256
[9] Butler VP Jr, Odel JG, Rath E, Wolin MJ, Behrens MM, Martin TJ, Kardon RH, Gouras P (1995) Digitalis-induced visual disturbances with therapeutic serum digitalis concentrations. Ann Intern Med 123: 676–680
[10] Coombes S, Lord GJ, Owen MR (2003) Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Phys D 178: 219–241 · Zbl 1013.92006 · doi:10.1016/S0167-2789(03)00002-2
[11] Coombes S, Venkov NA, Shiau L, Bojak I, Liley DTJ, Laing CR (2007) Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys Rev E 76: 051901 · doi:10.1103/PhysRevE.76.051901
[12] Crook SM, Ermentrout GB, Bower JM (1998) Dendritic and synaptic effects of coupled cortical oscillators. J Comput Neurosci 5: 315–329 · Zbl 0904.92018 · doi:10.1023/A:1008839112707
[13] Danks JJ, Harrad RA (1998) Flashing lights in thyroid eye disease: a new symptom described and (possibly) explained. Br J Ophthalmol 82: 1309–1311 · doi:10.1136/bjo.82.11.1309
[14] Dybowski M (1939) Conditions for the appearance of hypnagogic visions. Kwart Psychol 11: 68–94
[15] Ermentrout GB, Cowan JD (1979a) A mathematical theory of visual hallucination patterns. Biol Cybern 34: 137–150 · Zbl 0409.92008 · doi:10.1007/BF00336965
[16] Ermentrout GB, Cowan JD (1979b) Oscillations in neuronal nets. J Math Biol 7: 265–280 · Zbl 0402.92012 · doi:10.1007/BF00275728
[17] Ermentrout GB, Cowan JD (1980) Secondary bifurcation in neuronal nets. SIAM J Appl Math 39: 323–340 · Zbl 0453.92007 · doi:10.1137/0139028
[18] Fohlmeister C, Gerstner W, Ritz R, van Hemmen JL (1995) Spontaneous excitations in the visual cortex: stripes, spirals, rings, and collective bursts. Neural Comput 7: 905–914 · Zbl 05480378 · doi:10.1162/neco.1995.7.5.905
[19] Freeman WJ (1978) Models of the dynamics of neural populations. Electroencephalogr Clin Neurophysiol 34: 9–18
[20] Frégnac Y (2003) Neurogeometry and visual perception. J Physiol Paris 97: 87–92 · doi:10.1016/j.jphysparis.2003.12.001
[21] Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9: 2432–2442
[22] Golubitsky M, Shiau LJ, Török A (2003) Bifurcation on the visual cortex with weakly anisotropic lateral coupling. SIAM J Appl Dyn Syst 2: 97–143 · Zbl 1088.37508 · doi:10.1137/S1111111102409882
[23] Hutt A, Bestehorn M, Wennekers T (2003) Pattern formation in intracortical neuronal fields. Netw Comput Neural Syst 14: 351–368 · doi:10.1088/0954-898X/14/2/310
[24] Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett 77: 960–963 · doi:10.1103/PhysRevLett.77.960
[25] Klüver H (1966) Mescal and mechanisms of hallucinations. University Of Chicago Press, Chicago
[26] Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity: the alpha-rhythm of the thalamus. Kybernetik 15: 27–37 · doi:10.1007/BF00270757
[27] Matsui H, Udaka F, Tamura A, Oda M, Kubori T, Nishinaka K, Kameyama M (2006) Lack of visual stimuli or deafferentiation and visual hallucination in Charles Bonnet Syndrome, Parkinson’s disease and possibly other retinal dysfunction. J Geriatr Psychiatry Neurol 19: 36–40 · doi:10.1177/0891988705284739
[28] Murray JD (2003) Mathematical Biology. Springer, Berlin
[29] Nunez PL (1981) Electric fields of the brain. Oxford University Press, Oxford
[30] Panayiotopoulos CP (1999) Visual phenomena and headache in occipital epilepsy: a review, a systematic study and differentiation from migraine. Epileptic Disord 1: 205–216
[31] Rennie CJ, Robinson PA, Wright JJ (1999) Effects of local feedback on dispersion of electrical waves in the cerebral cortex. Phys Rev E 59: 3320–3329 · doi:10.1103/PhysRevE.59.3320
[32] Robinson PA (2006) Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Phys Rev E 73: 041904 · doi:10.1103/PhysRevE.73.041904
[33] Robinson PA, Rennie CJ, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56: 826–840 · doi:10.1103/PhysRevE.56.826
[34] Robinson PA, Rennie CJ, Rowe DL, O’Connor SC (2004) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapp 23: 53–72 · doi:10.1002/hbm.20032
[35] Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Gordon E (2005) Multiscale brain modelling. Philos Trans R Soc Lond B 360: 1043–1050 · doi:10.1098/rstb.2005.1638
[36] Tass P (1997) Oscillatory cortical activity during visual hallucinations. J Biol Phys 23: 21–66 · doi:10.1023/A:1004990707739
[37] Tatlýpýnar S, Kadayýfçýlar S, Eldem B, Türkçüoğlu P (2001) Prevalence of photopsias and charles bonnet syndrome: evaluation of eighty with low vision. Neuroophthalmology 25: 193–197 · doi:10.1076/noph.25.4.193.8064
[38] Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 15: 55–80 · Zbl 0281.92003 · doi:10.1007/BF00288786
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.